1. Всего деталей = 31+6 = 37 шт. Вероятность брака q = 6/37, и без брака p = 1 -6/37 = 31/37. Читаем задачу - ХОТЯ БЫ одна без брака - значит две с браком или 2 без брака и одна с браком.. Вероятность такого события - сумма вероятностей каждого. P(A) = p*q*q +p*p*q = (31*6*6 + 31*31*6)/ 37³ = 6882/50653 ~ 0.1358 = 13.58% - ОТВЕТ 2. Вероятность сдать - р(1)=р(2)=0,9 и р(3)=0,8 Вероятность не сдать q(1)=q(2)=0.1 и q(3)=0.2 НАЙТИ - сдать два и провалить один. Три варианта - сумма вероятностей, каждое событие - произведение вероятностей. Р(А) = р1*р2*q3 + p1*q2*p3 + q1*p2*p3 Вычисляем подставив значения p и q. Р(А) = 0,9*0,1*0,8 + 0,9*0,1*0,8 + 0,1*0,9*0,8 = 3*0,072 = 0,216 = 21,6%
x=31,832
Пошаговое объяснение:
0,83x + 0,025x - - 0,0042 = 0,03.
0,8258-0,025x=0,03
-0,025x=0,03-0,8258
-0,025x=-0,7958
x=31,832