Двойное кодирование в культуре относится к постмодернизму. Материал из источника: "Т. Дан особо подчеркивает тот факт, что постмодернизм "закодирован дважды". С одной стороны <...> произведения постмодернизма обладают рекламной привлекательностью предмета массового потребления для всех людей<...>.С другой стороны, пародийным осмыслением более ранних - и преимущественно модернистских - произведений, иронической трактовкой их сюжетов и приемов он апеллирует к самой искушенной аудитории." "В результате «двойное кодирование» оказывается стилистическим проявлением «познавательного сомнения», эпистемологической неуверенности, тем более, что практически все постмодернисты стремятся доказать своим потенциальным реципиентам (читателям, слушателям, зрителям), что любой рациональный и традиционно постигаемый смысл является «проблемой для современного человека»
Поставим перед собой следующую задачу.Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz, задана точка , прямая a и требуется написать уравнение плоскости , проходящей через точку М1 перпендикулярно к прямой a.Сначала вспомним один важный факт.На уроках геометрии в средней школе доказывается теорема: через заданную точку трехмерного пространства проходит единственная плоскость, перпендикулярная к данной прямой (доказательство этой теоремы Вы можете найти в учебнике геометрии за 10-11 классы, указанном в списке литературы в конце статьи).Теперь покажем, как находится уравнение этой единственной плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.Мы можем написать общее уравнение плоскости, если нам известны координаты точки, лежащей в этой плоскости, и координаты нормального вектора плоскости.В условии задачи нам даны координаты x1, y1, z1 точки М1, через которую проходит плоскость . Тогда, если мы найдем координаты нормального вектора плоскости , то мы сможем составить требуемое уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.Любой направляющий вектор прямой a представляет собой нормальный вектор плоскости , так как он ненулевой и лежит на прямой a, перпендикулярной к плоскости . Таким образом, нахождение координат нормального вектора плоскости сводится к нахождению координат направляющего вектора прямой a.В свою очередь, координаты направляющего вектора прямой a могут определяться различными зависящими от задания прямой a в условии задачи. Например, если прямую a в прямоугольной системе координат задают канонические уравнения прямой в пространстве вида или параметрические уравнения прямой в пространстве вида , то направляющий вектор этой прямой имеет координатыax, ay и az; если же прямая a проходит через две точки и , то координаты ее направляющего вектора определяются как .Итак, получаем алгоритм для нахождения уравнения плоскости , проходящей через заданную точку перпендикулярно к заданной прямой a:находим координаты направляющего вектора прямой a ();принимаем координаты направляющего вектора прямой a как соответствующие координаты нормального вектора плоскости (, где );записываем уравнение плоскости, проходящей через точку и имеющей нормальный вектор , в виде - это и есть искомое уравнение плоскости, проходящей через заданную точку пространства перпендикулярно к заданной прямой.Из найденного общего уравнения плоскости вида можно, при необходимости, получить уравнение плоскости в отрезках и нормальное уравнение плоскости.
21889,2 просто все числа вправо пока одно число останется