1) V = 2·3·4= 24(куб.см) 2) Раз призма правильная, значит, в основании квадрат. V = S осн-я·H = 10·10·3=300(куб.см) 3) а) У куба грань - квадрат. Если его площадь 25, значит, сторона квадрата =5 V =5·5·5=125 (куб.см) б) У куба 6 граней. Площадь одной 24:6 = 4. Это площадь квадрата, значит, его сторона = 2. V =2·2·2=8(куб. см) 4) V = S осн-я·H а) V = 0,5·3·4·6=36( куб. см) б) V=0,5·3·4·5= 30 (куб.см) 5) V = a^3 а) Диагональ грани - это диагональ квадрата или гипотенуза равнобедренного треугольника. Применим т. Пифагора. х^2 + x^2 = 8⇒2x^2 = 8⇒x^2 =4⇒x =2 V = 2^3=8(куб см) б) Приём тот же. x^2 + x^2 = 12⇒2x^2 = 12⇒x^2 =6⇒x =√6 V = (√6)^3= 6√6 (куб. см)
Вообще-то, наверное, доказуемо. Если числа различны, то выберем вершину, в которой находится наименьшее число. Предположим, что остальные числа, находящиеся по соседству, отличаются от нашего выбранного числа на a, на b и на c (у нашего числа будет три соседа). Обозначим выбранное нами число, как x. Тогда его соседи будут: x+a, x+b, x+c. Числа a,b и c - могут иметь любые положительные значения, сколь угодно малые. Важно лишь, чтобы они отличались друг от друга. Среднее арифметическое трех "соседей" будет равно: Полученное выражение будет больше, чем x: Таким образом имеем число, которое будет меньше среднего арифметического трех соседних чисел.
25√317
Пошаговое объяснение:
d = √((xb - xa)^2 + (yb - ya)^2) =
= √((300 - 25)^2 + (400 - 50)^2) =
= √(2752 + 3502) = √(75625 + 122500) =
= √198125 = 25√317 ≈ 445.1123453691214