М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ПростоТим5
ПростоТим5
05.03.2022 01:52 •  Математика

Сколько гамильтоновых путей может быть в турнире на 4 вершинах?

👇
Ответ:
stasymitaki
stasymitaki
05.03.2022

Пошаговое объяснение:

Много важных свойств турниров рассмотрены Ландау (Landau)[1] для того, чтобы исследовать модель доминирования цыплят в стае. Текущие приложения турниров включают исследования в области голосования и коллективного выбора[en] среди других прочих вещей. Имя турнир исходит из графической интерпретации исходов кругового турнира, в котором каждый игрок встречается в схватке с каждым другим игроком ровно раз, и в котором не может быть ничьих. В орграфе турнира вершины соответствуют игрокам. Дуга между каждой парой игроков ориентирована от выигравшего к проигравшему. Если игрок {\displaystyle a}a побеждает игрока {\displaystyle b}b, то говорят, что {\displaystyle a}a доминирует над {\displaystyle b}b.

4,7(1 оценок)
Открыть все ответы
Ответ:
Germionochka
Germionochka
05.03.2022

№5.

Решение. Сумма цифр числа 996 равна 24. Причём 996 — самое большое из выписанных с такой суммой цифр (так как в первых двух разрядах стоят максимально большие цифры). Значит, после числа 996 выписаны только числа с суммой цифр 25, 26 и 27. Это 997, 979, 799, 988, 898, 889; 998, 989, 899; 999. Таким образом, перед числом 996 написано 10 чисел, значит, оно оказалось на 990-м месте.

 

 

№6Решение. Предположим, что никакие две доминошки не образуют квадрат из четырёх клеток. Попробуем выяснить, как расположены доминошки в этом случае. Будем считать, что в верхнем левом углу лежит горизонтальная доминошка. Тогда ниже неё лежит вертикальная доминошка (см. рисунок). Справа от этой доминошки тоже лежит горизонтальная доминошка, и так далее. Спускаясь таким образом по диагонали, дойдём до правого нижнего угла квадрата. Этот угол можно заполнить, только положив тужа две доминошки, которые будут образовывать квадрат. Значит, наше предположение было неверным. Полученное противоречие доказывает требуемое утверждение.

 

 

№7Решение. Вот одно из возможных решений: 1 → 2 → 4 → 8 → 16 → 32 → 64 → 128 → 218 → 436 → 346 → 692 → 296 → 592 → 259 → 518 → 158 → 316 → 631. Попробуйте самостоятельно найти какое-нибудь другое решение.

 

 

 

№8Решение. Так как в конце концов остался жив барон (Б), то он мог сражаться только с герцогом (Г). Так как дуэль выигрывают только один раз, то этот барон больше ни в каких дуэлях не участвовал. А герцог до этого мог сражаться только с графом (Гр). Получаем цепочку Б → Г → Гр. Аналогично, граф мог сражаться только с бароном. Выписывая эту цепочку дальше, получаем: Б → Г → Гр → Б → Г → Гр → Б → Г → Гр → Б ... Поскольку 2012 = 3 · 670 + 2, в этой цепочке будет 670 комбинаций Б → Гр → Г, после которых в цепочке будут ещё двое придворных, а имеенно Б → Г. Таким образом, первый погибший придворный был герцогом (Г).

4,7(47 оценок)
Ответ:
незнаю178
незнаю178
05.03.2022

№5.

Решение. Сумма цифр числа 996 равна 24. Причём 996 — самое большое из выписанных с такой суммой цифр (так как в первых двух разрядах стоят максимально большие цифры). Значит, после числа 996 выписаны только числа с суммой цифр 25, 26 и 27. Это 997, 979, 799, 988, 898, 889; 998, 989, 899; 999. Таким образом, перед числом 996 написано 10 чисел, значит, оно оказалось на 990-м месте.

 

 

№6Решение. Предположим, что никакие две доминошки не образуют квадрат из четырёх клеток. Попробуем выяснить, как расположены доминошки в этом случае. Будем считать, что в верхнем левом углу лежит горизонтальная доминошка. Тогда ниже неё лежит вертикальная доминошка (см. рисунок). Справа от этой доминошки тоже лежит горизонтальная доминошка, и так далее. Спускаясь таким образом по диагонали, дойдём до правого нижнего угла квадрата. Этот угол можно заполнить, только положив тужа две доминошки, которые будут образовывать квадрат. Значит, наше предположение было неверным. Полученное противоречие доказывает требуемое утверждение.

 

 

№7Решение. Вот одно из возможных решений: 1 → 2 → 4 → 8 → 16 → 32 → 64 → 128 → 218 → 436 → 346 → 692 → 296 → 592 → 259 → 518 → 158 → 316 → 631. Попробуйте самостоятельно найти какое-нибудь другое решение.

 

 

 

№8Решение. Так как в конце концов остался жив барон (Б), то он мог сражаться только с герцогом (Г). Так как дуэль выигрывают только один раз, то этот барон больше ни в каких дуэлях не участвовал. А герцог до этого мог сражаться только с графом (Гр). Получаем цепочку Б → Г → Гр. Аналогично, граф мог сражаться только с бароном. Выписывая эту цепочку дальше, получаем: Б → Г → Гр → Б → Г → Гр → Б → Г → Гр → Б ... Поскольку 2012 = 3 · 670 + 2, в этой цепочке будет 670 комбинаций Б → Гр → Г, после которых в цепочке будут ещё двое придворных, а имеенно Б → Г. Таким образом, первый погибший придворный был герцогом (Г).

4,4(16 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ