Прямая пропорциональность:
у=kx, k≠ 0
где k - коэффициент пропорциональности; y, x - пропорциональные переменные.
Свойство прямой пропорциональности:
x₁:x₂=y₁:y₂
Обратная пропорциональность
у=k:x, k≠ 0, x≠0
Свойство обратной пропорциональности:
x₁:x₂=y₂:y₁
Прямая пропорциональность
Правило.
Если две величины связаны между собой так, что
увеличение (уменьшение) одной пропорционально (во столько же раз) увеличивает (уменьшает) и другую величину, то такие величины прямо пропорциональны.
Прямая пропорциональность
.|а₁ — b₁|
↓а₂ — b₂↓
Обратная пропорциональность.
Правило.
Если две величины связаны между собой так, что увеличение (уменьшение) одной пропорционально (во столько же раз) уменьшает (увеличивает) и другую величину, то такие величины обратно пропорциональны.
.|а₁ — b₁↑
↓а₂ — b₂|
Если известно, что центр участка имел квадратную форму, то, обозначив его сторону за а метров, площадь этого участка будет равна а * а м2. Если также были участки в виде 4 полукругов, то их при диаметре а метров, площадь каждого полукруга будет равна 1/2π(а/2)2. Т.е. все 4 полукруга в сумме имеют площадь:
4 * 1/2π(а/2)2 = 2π(а/2)2 = 1/2πа2. Если принять π ≈ 3, тогда площадь равна 3/2а2 = 1,5а2.
Получаем в сумме площадь всех участков:
а2 + 1,5а2 = 90,
2,5а2 = 90,
а2 = 36,
а = 6.
Значит радиус полукруга равен 6/2 = 3 (м).
А ограждение имеет длину, равную длине 4 полукругов: 4 * 1/2πа = 2 * 3 * 6 = 36 (м).
ответ: сторона квадрата 6 м, радиус 3 м, а длина ограждения 36 м.
(х-2а)^2