ДАНО Y = x³ - 5x РЕШЕНИЕ 1) Область определения - Х⊂ R 2) Корни функции Y = x*(x² - 5) = 0 - точки пересечения с осью Х x1 = 0 и x2,3 = √5 = +/- 2.236 3) Экстремумы функции - первая производная = 0 Y' = 3*x² - 5 = 3*(x² - 5/3) x1.2 = +/- √(5/3) = +/- 1.29 Значения в точках экстремума Ymin = Y(1.29) = -4.303 Ymax=(Y(-1.29) = 4.303 4) Плавность - X ⊂ (-∞; -1,29] - возрастает Х = -1,29 - максимум X ⊂ [-1.29; 1.29] - убывает Х = 1,29 - минимум Х ⊂ [1.29; +∞) - возрастает 5) Точка перегиба - вторая производная Y" = 6*x = 0 x = 0 X ⊂ (-∞;0] - выпуклая и X ⊂ [0; +∞) - вогнутая 6) Непрерывная - разрывов нет 6) НЕЧЕТНАЯ 7) Область значений - Y ⊂ (-∞; +∞)
Задача из раздела комбинаторика, можно воспользоваться формулой размещения, но так как решений очевидно, что решений будет немного, для наглядности, выполним решение простым перебором вариантов. Итак, надо учесть, что искомое число должно на первом месте иметь цифру, отличную от нуля. Какие цифры будут составлять искомое число? По условию сумма должна равняться Трем. Значит это могут быть только следующие варианты: 1. 3 0 0 0 0 0 1 вариант. 2. 2 1 0 0 0 0 или ["двигаем" единичку вправо] 2 0 1 0 0 0 или 5 вариантов.
3. 1 2 0 0 0 0 [поменяли единицу и двойку и теперь двойку двигаем вправо] 1 0 2 0 0 0 5 вариантов.
4. Следующие варианты будут состоять из единиц и нолей. 1 1 1 0 0 0 [ двигаем правую единичку вправо] 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 1 4 варианта
[теперь рассмотрим положения, когда первая цифра единица зафиксирована на первом месте, а остальные две единицы занимают другие положения, не рассмотренные ранее]
72 × 9 - 68 000 : 400 =478
1) 72 × 9 = 648
2) 68000 : 400 = 170
3) 648 - 170= 478
ᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠ
18918 : 6 - 260 × 6 = 1593
1) 18918 : 6= 3153
2) 260 * 6= 1560
3) 3153 - 1560 = 1593
ᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠ
12636 : 3 - 180 × 4= 3492
1) 12636 : 3 = 4212
2) 180 * 4 =720
3) 4212 - 720 = 3492
ᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠ
(2089 - 1903) : 3 + 236 = 298
1) 2089 - 1903 = 186
2) 186 : 3 = 62
3) 62 + 236 = 298
Мой развернутый конец :)