Т.к. трапеция равнобедренная, то уголД=углуА=60град. Проведём высоту ВН. Получаем прямоугольный треугольник АВН. Сумма углов треугольника равна 180 градусам. находим угол АВН=180-90-60=30. Катет, лежащий против угла 30град. равен половине гипотенузы. В данном случае против угла 30град. лежит АН. АН=0,5АВ=0,5*12=6. Проведем ещё одну высоту СК. Получается прямоугольный треугольник СКД. Т.к. трапеция равнобедренная, то треугольникАВН=треугольникуСКД =>АН=КД=6. Основание АД=АН+НК+КД. НК=10, т.к. ВСКН-прямоугольник. Отсюда получаем: АД=6+10+6=22.
Бесконечная периодическая десятичная дробь равна обыкновенной дроби, в числителе которой разность между всем числом после запятой и числом после запятой до периода, а знаменатель состоит из «девяток» и «нулей», причем, «девяток» столько, сколько цифр в периоде, а «нулей» столько, сколько цифр после запятой до периода.
Итак, В числителе разность: Уменьшаемое - все число после запятой, включая период - это 221 И вычитаемое - число после запятой до периода - это 2 Следовательно, в числителе разность: (221-2)
В знаменателе: Две девятки, поскольку в периоде (21) две цифры И один ноль, поскольку после запятой до периода только одна цифра 2 Следовательно, в знаменателе число 990
Теперь записываем дробь (221-2)/990
И считаем: (221-2)= 219/990 = = 73/330
А поскольку в исходном числе 1,2(21) была 1 целая, то она никуда не делась, и вся дробь теперь выглядит так: 1 73/330 или 403/330
Т.к. трапеция равнобедренная, то уголД=углуА=60град. Проведём высоту ВН. Получаем прямоугольный треугольник АВН. Сумма углов треугольника равна 180 градусам. находим угол АВН=180-90-60=30. Катет, лежащий против угла 30град. равен половине гипотенузы. В данном случае против угла 30град. лежит АН. АН=0,5АВ=0,5*12=6. Проведем ещё одну высоту СК. Получается прямоугольный треугольник СКД. Т.к. трапеция равнобедренная, то треугольникАВН=треугольникуСКД =>АН=КД=6. Основание АД=АН+НК+КД. НК=10, т.к. ВСКН-прямоугольник. Отсюда получаем: АД=6+10+6=22.