Есть три окружности с общим центром. Известно, что радиус каси больше радиуса Радиус одной из окружностей равен 4 см. Чему равны радиусы двух дой следующей окружности в других? Найдите разные решения этой задачи. !!
Х и у стороны прямоугольника Из условия задачи известна что : 1) ( х + у) * 2 = 30 или х + у = 15 х = 15 - у ; также известно что : х * у = 36 . Подставим значение х из первого уравнения . Получим : (15 - у) * у = 36 15у - у^2 = 36 y^2 - 15y + 36 = 0 Найдем дискриминант уравнения D . D = (- 15)^2 - 4 * 1 * 36 = 225 - 144 = 81 . sqrt (D) = sqrt (81) = 9 Найдем квадратные корни уравнения : 1-ый = (-(-15) + 9) /2*1 = (15 + 9)/2 = 12 ; 2-ой - (-(-15) - 9) /2*1 = (15 - 9) /2 = 3 Одно из сторон прямоугольника равна : 12 см или 3 см а другая исходя из уравнения х = 15 - у будет равна : 3 см или 12 см
1. если радиус одной из окружностей равен 4 см, то вторая окружность может быть в 2 раза меньше, а третья- в 2 раза меньше второй:
4:2=2(см)- радиус второй окружности;
2:2=1(см)- радиус третий окружности.
радиус = 1, 2, 4
2. если радиус одной из окружностей равен 4 см, то вторая окружность может быть в 2 раза меньше, а третья- в 2 раза больше:
4:2=2(см)- радиус второй окружности;
4*2=8(см)- радиус третий окружности.
радиус - 2, 4, 8
3. если радиус одной из окружностей равен 4 см, то вторая окружность может быть в 2 раза больше, а третья- в 2 раза больше второй:
4*2=8(см)- радиус второй окружности;
8*2=16(см)-радиус третий окружности.
радиус = 4, 8, 16