Задание № 1:
Сколько существует различных шестизначных чисел, у которых третья цифра 3, пятая цифра 5, а остальные цифры чётные? Цифры в записи числа не должны повторяться.
на первом месте любая четная цифра кроме нуля (2468) - 4 варианта
на втором месте любая четная цифра (02468), кроме одной использованной раньше - 4 варианта
на четвертом месте любая четная цифра (02468), кроме двух использованных раньше - 3 варианта
на шестом месте любая четная цифра (02468), кроме трех использованных раньше - 2 варианта
4*4*3*2=96
ответ: 96
Если раздавать по 5, то не хватит 3 мандаринов ⇒ если добавить 3 мандарина, то всё будет как раз идеально. Пусть мандаринов было x. Тогда детей было (x+3)/5.
Другим можно получить, что если раздавать по 4, то останется 17 мандаринов ⇒ если бы их было на 17 меньше, то всем бы идеально раздали по 4. Тогда детей было (x-17)/4.
Мы дважды нашли кол-ва детей, соответственно можем их приравнять.
Получаем уравнение: =
Не буду прописывать всё решение, в результате получаем, что x = 97. Это и есть искомое число; проверим его. Если подставить 97 в любую из полученных дробей, мы узнаем кол-во детей. Например:
Если раздавать 20 детям 97 мандаринов по 5, то одному не хватит 3 мандаринов, а если по 4, то мы потратим всего 80, ⇒ 17 останутся лишними. Всё получается верно))
ОТВЕТ: 97 мандаринов.