Оксаны 4000 сомов. Пусть количество
сомов каждый месяц увеличивается
на 1500. Значит, мы имеем дело с
арифметической прогрессией, n-ый
член которой можно записать как
4000+1500(n-1).
У Мартина 50000 сомов. Пусть
количество сомов каждый месяц
уменьшается на 750. Значит, это тоже
арифметическая прогрессия, n-ый
член которой можно записать как
50000-750(n-1).
По условию, через п месяцев, у Оксаны
будет на 1250 сомов больше, чем у
Мартина. Составляем уравнение:
4000+1500(n-1)-1250=50000-750(n-1)
2750+1500-1500=50000=750nt750
1250+150On=50750-750n
2250n=49500
n=49500:2250
n=22 (мес.) - через столько месяцев у
Оксаны будет на 1250 сомов больше, чем
у Мартина.
ПРАВИЛЬНО через 22 месяца
Пошаговое объяснение:
Пусть z км проплыли туристы по течению реки, тогда против течения они проплыли (19−z) км.
7−1=6 км/ч — скорость лодки против течения реки,
7+1=8 км/ч — скорость лодки по течения реки.
Чтобы найти время, надо расстояние делить на скорость, поэтому:
19−z6 ч — время, затраченное туристами на путь против течения реки, а
z8ч — время, затраченное туристами на путь по течения реки.
Зная, что в пути туристы были менее трёх часов, составим неравенство:
19−z6+z8<3
Чтобы избавиться от дроби, умножим обе части неравенства на 48.
(19−z6+z8)⋅48<3⋅4819−z6⋅48+z8⋅48<1448⋅(19−z)+6⋅z<144152−8z+6z<144−2z<−8:(−2)z>4
ответ: 4<z<19 км.
Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.
Таким образом внешний угол треугольника ABC, расположенный при вершине C равен (14+27)°=41°.
ответ: 41.