7/Задание № 2:
Если от задуманного трёхзначного числа отнять 8, то получившееся число разделится на 8. Если от задуманного числа отнять 9, то результат разделится на 9. А если к числу прибавить 13, то результат разделится на 13. Какое число было задумано?
РЕШЕНИЕ: Пусть х задумано. Тогда:
х-8=8а, значит х=8a+8=8(a+1) - задуманное число делится на 8
х-9=9b, значит х=9b+9=9(b+1) - задуманное число делится на 9
x+13=13c, значит х=13c-13=13(c-1) - задуманное число делится на 13
Учитывая, что 8, 9 и 13 - попарно взаимно просты, то задуманное число делится на НОК(8, 9, 13)=8*9*13=936. Понятно, что трёхзначное число, кратное 936 одно - само это число.
ОТВЕТ: 936
7/Задание № 5:
В двух корзинах 79 яблок, причём 7/9 первой корзины составляют зелёные яблоки, а 9/17 второй корзины - красные яблоки. Сколько зелёных яблок в первой корзине?
РЕШЕНИЕ: Пусть в первой корзине а яблок. Это число а должно делиться на 9, так как 7/9 первой корзины составляют зелёные яблоки, а это натуральное число. Пусть во второй корзине b яблок, тогда по той же причине b должно быть кратно 17, так как 9/17 второй корзины - красные яблоки.
Тогда уравнение 9p+17q=79 даст такие натуральные p и q, что p - (1/9) часть яблок в первой корзине, q - (1/17) часть яблок во второй корзине.
9p+17q=79
17q=79-9p
p=1: 79-9=70, 70 не делится на 17
p=2: 79-18=61, 61 не делится на 17
p=3: 79-27=52, 52 не делится на 17
p=4: 79-36=43, 43 не делится на 17
p=5: 79-45=34, q=34/17=2
p=6: 79-54=25, 25 не делится на 17
p=7: 79-63=16, 16 не делится на 17 и результат менее наименьшего натурального числа 1, поэтому проверку можно завершить.
Значит, p=5 - (1/9) часть яблок в первой корзине, зеленых же яблок 7/9 от общего числа, то есть в 7 раз больше, чем величина р: 5*7=35.
ОТВЕТ: 35 яблок
7/Задание № 6:
Периметр равнобедренного треугольника 28 см. Одна из его сторон втрое больше другой. Найдите основание равнобедренного треугольника. Дайте ответ в сантиметрах.
РЕШЕНИЕ: Пусть основание равно х см, а боковая сторона 3х см. Тогда периметр равен:
х+3х+3х=28
7х=28
х=4 (см)
Основание быть в три раза длиннее боковой стороны не может вследствие неравенства треугольника (сторон 3х, х и х не бывает, 3х>х+х).
ОТВЕТ: 4 см
А) (с-2)(с+3) - с^2= с^2 -2c+3c-6-c^2=c-6
B) 7(x+8) + (x+8)(x-8)= (x+8)(7+x+8)=(x+8)(x+15)
C) (x+5)*4x-(2x-5)^2=4x^2+20x-(4x^2-20x+25)=40x-25
2
A) 8x^2-8y^2= 8(x^2-y^2)=8(x-y)(x+y)
B) -a^2+6a-9=-(a^2-6a+9)= -(a-3)^2
C) ab^3-ba^3= ab(a^2-b^2)= ab(a-b)(a+b)
4
A) 3x-3y+x^2y-xy^2= x(3+xy) - y(3+xy)= (x-y)(3+xy)
B) a^3-8= (a-2)(a^2+2a+4)
5
-y^2+2y-5<0?
-y^2+2y-5= -y^2+2y-1-4= -(y^2-2y+1)-4= -(y-1)^2 -4
Таким образом, квадрат любого числа принимает лишь положительные значения, однако в этом случае перед квадратом стоит знак минус, что означает, что данный квадрат если вытащить его за скобки сразу станет отрицательным, к тому же из этого числа отнимают 4, даже если квадрат будет равен нулю, то общее значение выражения будет равно (-4), что является отрицательным числом. Из-за этого данное выражение принимает только отрицательные значения.
Пошаговое объяснение:
ответ: 1 и 4
Пошаговое объяснение:
потому что я вот такая вот молодец догадалась и это оказалось верным