На основании определения функции каждому значению аргумента х из области определения R ( все действительные числа ) соответствует единственное значение функции y , равное x 2.
Например, при х = 3 значение функции y = 3 2 = 9 , а при х = –2 значение функции y = (–2) 2 = 4 .
Изобрази график функции y = x 2 . Для этого присвой аргументу х несколько значений, вычисли соответствующие значения функции и внеси их в таблицу.
Если: x = –3 , x = –2 , x = –1 , x = 0 , x = 1 , x = 2 , x = 3 ,
то: y = 9 , y = 4 , y = 1 , y = 0 , y = 1 , y = 4 , y = 9 .
Нанеси точки с вычисленными координатами (x ; y) на плоскость и соедини их плавной непрерывной кривой. Эта кривая, называющаяся параболой, и есть график исследуемой тобой функции.
На графике видно, что ось OY делит параболу на симметричные левую и правую части (ветви параболы), в точке с координатами (0; 0) (вершине параболы) значение функции x 2 — наименьшее. Наибольшего значения функция не имеет. Вершина параболы — это точка пересечения графика с осью симметрии OY .
На участке графика при x ∈ (– ∞; 0 ] функция убывает, а при x ∈ [ 0; + ∞) возрастает.
Функция y = x 2 является частным случаем квадратичной функции.
Рассмотрим ещё несколько её вариантов. Например, y = – x 2 .
Графиком функции y = – x 2 также является парабола, но её ветви направлены вниз.
График функции y = x 2 + 3 — такая же парабола, но её вершина находится в точке с координатами (0; 3) .
(В+Ш)+(Ш+К)+(В+К)= 116+88+56= 260 это если по два раза посчитали все;
260:2=130 это (В+Ш+К) стаканчиков всего трёх видов вместе
(В+Ш+К)-(В+Ш)= 130-116=14ст К, одинаковые вычли, осталось клубничное;
(В+Ш+К)-(Ш+К)= 130-88=42ст В, ванильного
(В+Ш+К)-(В+К)= 130-56=74ст Ш, шоколадного
Проверка К+В+Ш= 14+42+74=130 три вида вместе ответ: шоколадного мороженого 74 стаканчика, ванильного 42 и клубничного 14 приготовили для королевского бала.