М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
xXNASTYXx
xXNASTYXx
25.07.2021 21:24 •  Математика

Укажи, какие различные
многоугольники изображены
на рисунке.
BILIM
Land


Укажи, какие различныемногоугольники изображенына рисунке.BILIMLand​

👇
Открыть все ответы
Ответ:
bratan9
bratan9
25.07.2021

1. 2*x + 3*y = 15;

2. x2 + y2 = 4;

3. x*y = -1;

4. 5*x3 + y2 = 8.

Каждое из представленных выше уравнений является уравнением с двумя переменными. Множество точек координатной плоскости, координаты которых обращают уравнение в верное числовое равенство, называется графиком уравнения с двумя неизвестными.

График уравнения с двумя переменными

Уравнения с двумя переменными имеют большое многообразие графиков. Например, для уравнения 2*x + 3*y = 15 графиком будет прямая линия, для уравнения x2 + y2 = 4 графиком будет являться окружность с радиусом 2, графиком уравнения y*x = 1 будет являться гипербола и т.д.

У целых уравнений с двумя переменными тоже существует такое понятие, как степень. Определяется эта степень, так же как для целого уравнения с одной переменной. Для этого приводят уравнение к виду, когда левая часть есть многочлен стандартного вида, а правая – нуль. Это осуществляется путем равносильных преобразований.

Графический решения систем уравнения

Разберемся, как решать системы уравнений, которые будут состоять из двух уравнений с двумя переменными. Рассмотрим графический решения таких систем.

Пример 1. Решить систему уравнений:

{ x2 + y2 = 25

{y = -x2 + 2*x + 5.

Построим графики первого и второго уравнений в одной системе координат. Графиком первого уравнения будет окружность с центром в начале координат и радиусом 5. Графиком второго уравнения будет являться парабола с ветвями, опущенными вниз.

Все точки графиков будут удовлетворять каждый своему уравнению. Нам же необходимо найти такие точки, которые будут удовлетворять как первому, так и второму уравнению. Очевидно, что это будут точки, в которых эти два графика пересекаются.

Используя наш рисунок находим приблизительные значения координат, в которых эти точки пересекаются. Получаем следующие результаты:

A(-2,2;-4,5), B(0;5), C(2,2;4,5), D(4,-3).

Значит, наша система уравнений имеет четыре решения.

x1 ≈ -2,2; y1 ≈ -4,5;

x2 ≈ 0; y2 ≈ 5;

x3 ≈ 2,2; y3 ≈ 4,5;

x4 ≈ 4,y4 ≈ -3.

Если подставить данные значения в уравнения нашей системы, то можно увидеть, что первое и третье решение являются приближенными, а второе и четвертое – точными. Графический метод часто используется, чтобы оценить количество корней и примерные их границы. Решения получаются чаще приближенными, чем точными.

4,5(47 оценок)
Ответ:
ilyailiavolkov
ilyailiavolkov
25.07.2021

(1;7) ,(7;1) ,(-1;-7) ,(-7;-1)

Пошаговое объяснение:

Умножим второе уравнение на два и сложим с первым, получим полный квадрат:

{x^2+y^2=50

{2xy  =14

x^2+2xy+y^2=64

(x+y)^2+64 Отсюда   { x+y=8            { x+y=-8

                                  { xy=7                {xy= 7

Составляем квадратное уравнение используя формулы Виета:

t^2-8t+7=0           z^2+8z+7=0  Решаем квадратные уравнения по  обратной теореме Виета ( подбором)

t1=7; t2=1             z1=-1; z2=-7

Отсюда получаем  четыре пары  решений системы:

(1;7) ,(7;1) ,(-1;-7), (-7:-1)

4,6(73 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ