Выбираем систему координат так, чтобы её начало совпадало с положением автомобиля, находящегося в точке А. Уравнение его движения х 1 = v1t. Тогда уравнение движения второго автомобиля х 2 =x0 +v2t. В некоторый момент времени координаты движущихся автомобилей будут одинаковы х1 = х2. Тогда v1t. = x0 +v2t. ю Отсюда t = x0/(v1 - v2). Вычислим: t = 150/(70 - 40) = 5 (часов) . Подставим. Второй автомобиль двигался из точки В со скоростью 40 км/ч. За 5 ч от путь S = 40*5 = 200 (км) . Можно решить задачу и арифметически: 1). С какой скоростью первый автомобиль догоняет второго? 70 - 40 = 30 (км/ч). 2). За сколько времени он его догонит? 150: 30 = 5 (часов) . 3). На какое расстояние он удалится? 40*5 = 200 (км) . ответ: 200 км. через 5 часов.
Правильная четырехугольная пирамида .
(см²).
(см).
Найти:- сторону основания.
Решение:Площадь боковой поверхности правильной четырехугольной пирамиды можно вычислить по следующей формуле:
, где - сторона основания и - апофема (высота боковой грани, проведенная из вершины).
Попробуем выразить через (сторону основания) и (см) (высоту пирамиды).
Рассмотрим прямоугольный (где - середина ). В нем (см), а (см) (как половина стороны квадрата, равной см).
По теореме Пифагора:
Все это подставляем в уравнение площади боковой поверхности (при возведении в квадрат держим в голове, что - неотрицательное):
Пусть :
Второй корень нам не подходит по причине отрицательности. Значит:
Задача решена!
ответ: или около (см).