ответ:Формулы не в КНФ:
{\displaystyle \neg (B\vee C),}{\displaystyle (A\wedge B)\vee C,}{\displaystyle A\wedge (B\vee (D\wedge E)).}
Но эти 3 формулы не в КНФ эквивалентны следующим формулам в КНФ:
{\displaystyle \neg B\wedge \neg C,}{\displaystyle (A\vee C)\wedge (B\vee C),}{\displaystyle A\wedge (B\vee D)\wedge (B\vee E).}
Пошаговое объяснение:
Конъюнкти́вная норма́льная фо́рма (КНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид конъюнкции дизъюнкций литералов. Конъюнктивная нормальная форма удобна для автоматического доказательства теорем. Любая булева формула может быть приведена к КНФ.[1] Для этого можно использовать: закон двойного отрицания, закон де Моргана, дистрибутивность.
ответ: Найкраща відповідь · 133 голоси
1+3+5++99=(1+99)+(3+97)+...(49+51)=у нас 25 скобок (в каждой сумма слагаемых равна 100)=100*25=2500
Пошаговое объяснение: