М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
хотам3
хотам3
09.06.2022 01:47 •  Математика

Розкладіть многочлен на множники:

x^3+5x^2-6x.​

👇
Ответ:
28номер
28номер
09.06.2022

Відповідь:

x(x^2+5x-6)

Покрокове пояснення:

х^3+5x^2-6x=x(x^2+5x-6)

4,4(80 оценок)
Ответ:
azimova0113
azimova0113
09.06.2022

Пошаговое объяснение:

Х^3+5х^2-6х=х(х^2+5х-6)=

=х(х^2-х+6х-6)=х(х(х-1)+6(х-1))=

=х(х-1)(х+6)

4,7(68 оценок)
Открыть все ответы
Ответ:

всего 576 таких чисел.

1)      обозначим первую цифру через x, она не может быть нулем, поэтому возможно 9 вариантов выбора

2)      другую цифру обозначим через y, ее тоже можно выбирать она может быть нулем, но не может быть равна x)

3)      нужно отдельно рассмотреть три случая: xy··, xxy· и xxx·; для каждого из этих случаев нужно подсчитать количество вариантов и эти числа сложить

4)в варианте xy·· две последних цифры могут быть (независимо друг от друга) выбраны равными x или y (по 2 варианта выбора)

поэтому всего получаем 9·9·2·2 = 324 варианта

5)в варианте xxy· последняя цифра может быть равна только x или y (2 варианта)

поэтому всего получаем 9·1·9·2 = 162 варианта

6)в варианте xxx· последняя цифра может быть любой (10 вариантов)

поэтому всего получаем 9·1·1·10 = 90 вариантов

7)      общее количество вариантов равно сумме

324 + 162 + 90 = 576

 Всю эту работу можно нарисовать с таблицы, но если нужен просто ответ- то 576 чисел

 

4,4(43 оценок)
Ответ:
ppavlowich
ppavlowich
09.06.2022

всего 576 таких чисел.

1)      обозначим первую цифру через x, она не может быть нулем, поэтому возможно 9 вариантов выбора

2)      другую цифру обозначим через y, ее тоже можно выбирать она может быть нулем, но не может быть равна x)

3)      нужно отдельно рассмотреть три случая: xy··, xxy· и xxx·; для каждого из этих случаев нужно подсчитать количество вариантов и эти числа сложить

4)в варианте xy·· две последних цифры могут быть (независимо друг от друга) выбраны равными x или y (по 2 варианта выбора)

поэтому всего получаем 9·9·2·2 = 324 варианта

5)в варианте xxy· последняя цифра может быть равна только x или y (2 варианта)

поэтому всего получаем 9·1·9·2 = 162 варианта

6)в варианте xxx· последняя цифра может быть любой (10 вариантов)

поэтому всего получаем 9·1·1·10 = 90 вариантов

7)      общее количество вариантов равно сумме

324 + 162 + 90 = 576

 Всю эту работу можно нарисовать с таблицы, но если нужен просто ответ- то 576 чисел

 

4,5(41 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ