Решение Формула для нахождения площади ортогональной проекции фигуры: S(орт)=cosα*S(фигуры), где α - угол между плоскостями,в одной из которых находится сама фигура, а во второй - ее проекция. По формуле Герона найдём сначала площадь самого треугольника: S(тр)=, где р-полупериметр треугольника, a,b,c-его стороны. Отсюда площадь равна: S(тр)=√(9*4*3*2)=6√6 cм² Теперь найдем косинус угла между плоскостями. Как сказано из условия, этот угол равен большему из углов этого треугольника. Известно, что напротив большей стороны лежит больший угол. В нашем случае большая сторона АС=7см, а значит наибольший угол треугольника - ∠В. Из теоремы косинусов найдем косинус этого угла: АС²=АВ²+ВС²-2*АВ*ВС*cos∠B ⇔ cos∠B=(АВ²+ВС²-АС²)/2*АВ*СВ=0.2 Т.к. ∠В=∠α(из условия), то площадь проекции этого треугольника равна: S(орт)=cos∠B*S(тр)=0.2*6√6=(6√6)/5 cм²
Пошаговое объяснение:
Пусть Ф - сумма монет у Фомы.
Е - сумма монет у Ерёмы;
Ю - сумма монет у Юлия.
х - сумма монет Фома должен отдать Ерёме, чтобы у них было поровну.
Ф - х = Е + х
Если Фома отдаст Ерёме 70 монет, то у Ерёмы и Юлия будет поровну:
70 + Е = Ю
Если Фома отдаст Ерёме 40 монет, то у Фомы и Юлия будет поровну:
Ф - 40 = Ю
{ Ф - х = Е + х
{ 70 + Е = Ю
{ Ф - 40 = Ю
Получили систему из трех уравнений с 4-мя неизвестными:
{ Ф - 2х = Е (1)
{ 70 + Е = Ю (2)
{ Ф - 40 = Ю (3)
Сложим первые два уравнения:
Ф - 2х + 70 + Е = Е + Ю
Ф - 2х + 70 = Ю
Вычтем проученное уравнение из 3-го уравнение с третьим :
Ф - 40 - (Ф - 2х + 70) = Ю - Ю
Ф - 40 - Ф + 2х - 70 = 0
2х - 110 = 0
2х = 110
х = 110 : 2
х = 55 монет Фома должен отдать Ерёме, чтобы у них было поровну.
ответ: 55 монет.
Проверка:
{ Ф - 55 = Е + 55
{ 70 + Е = Ю
{ Ф - 40 = Ю
{ Ф = Е + 110
{ Е = Ю - 70 подставим в первое уравнение.
{ Ф = Ю + 40 подставим в первое уравнение.
Ю + 40 = Ю - 70 + 110
40 + 70 = 110
110 = 110