Пошаговое объяснение:
Б) -5х+х=13-1
-4х=12
Х=-3
В)х+х=16-4
2х=12
Х=6
Г) 4х-20=0
4х=20
Х=5
не имеют точек пересечения.
Пошаговое объяснение:
Чтобы ответить на вопрос о существовании точек пересечения окружности и прямой, нужно выяснить, могут ли быть выполнены два условия одновременно, т.е. существуют ли точки, координаты которых удовлетворяют системе:
{y−6=0,
{x^2+y^2−8x−9=0;
Выразим у из первого уравнения:
у = 6.
Подставим полученное выражение во второе уравнение системы:
x^2+y^2−8x−9=0
x^2+6^2−8x−9=0
x^2−8x−9+36=0
х^2 - 8х + 27 = 0
D = 8^2 - 4•27 = 64 - 108 < 0, уравнение корней не имеет, а значит не имеет решений и система.
Окружность и прямая не пересекаются.
Число 6 есть коренем уравнения под буквой В :
6 + 4 = 16 - 6