Сколько жили в мире люди, столько они поддерживали эти традиции, а кроме этого создавали новые. Такие, как, например, традиция уважения к старшим. И мне кажется, что появилась она как-то сама по себе, просто на протяжении общения.
Уважение к старшим не является каким-то ритуалом, который повторяется только несколько раз в год. Мы должны поддерживать ее каждый день. Я не имею ввиду, что надо твердить своим родителям, бабушкам и дедушкам, что мы их уважаем, ведь слова – это только слова. А слова надо подкреплять действиями. И как же доказать старшим, что мы их действительно уважаем? Очень ли это тяжело? Много ли усилий надо к этому прибавить? По моему мнению, это совсем не тяжело и не нуждается в почти никаких усилиях. Лишь немного. Совсем не тяжело уступить место в трамвае или троллейбусе. Но это уже и есть знак уважения к старшим.
Пошаговое объяснение: Если забыть про условие задачи и поступить так - провести через выбранную точку Р на AD плоскость II DBC. Точки пересечения АВ и АС с этой плоскостью обозначим M1 и N1. Легко показать, что прямая РN1 II DC (если бы это было не так, то у параллельных по построению плоскостей DBC и PM1N1 была бы общая точка), и отношение AN1 : N1C = AP : PD по свойству параллельных прямых в плоскости (это свойство - что параллельные прямые отсекают пропорциональные отрезки у любых секущих). В плоскости ADC через точку Р можно провести ТОЛЬКО одну прямую II DC, поэтому прямая PN1 совпадает с прямой PN (точка N задана в задаче). Точно так же доказывается, что PM1 II DB и совпадает с прямой РМ (точка М задана в задаче).
Итак, получилось, что плоскость, параллельная DBC, проходящая через точку P, содержит точки M и N (или можно сказать - две проходящие через Р несовпадающие прямые MP и NP). Поскольку через 3 различных точки (или можно сказать - через 2 несовпадающие пересекающиеся прямые) можно провести ТОЛЬКО одну плоскость, то утверждение задачи доказано.