Доказательство.
Пусть α и β — данные плоскости, a1 и a2 — пересекающиеся прямые в плоскости α , а b1 и b2 — соответственно параллельные им прямые в плоскости β .
Допустим, что плоскости α и β не параллельны, то есть, они пересекаются по некоторой прямой c .
Прямая a1 параллельна прямой b1 , значит, она параллельна и самой плоскости β .
Прямая a2 параллельна прямой b2 , значит, она параллельна и самой плоскости β (признак параллельности прямой и плоскости).
Прямая c принадлежит плоскости α , значит, хотя бы одна из прямых — a1 или a2 — пересекает прямую c , то есть имеет с ней общую точку. Но прямая c также принадлежит и плоскости β , значит, пересекая прямую c , прямая a1 или a2 пересекает плоскость β , чего быть не может, так как прямые a1 и a2 параллельны плоскости β .
Из этого следует, что плоскости α и β не пересекаются, то есть, они параллельны.
Свойства параллельных плоскостей
Теорема 1. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны.
4*(x-2)=3*(2x+3), 4 и 3 дополнительные множители
раскрываем скобки: 4x-8=6x+9, 4x-6x=9+8, -2x=17, x=-8,5
в)Исходя из условия получаем, что 2-е выражение больше 1-го на 2, следовательно получается уравнение 3/4-5/6*z-(1/2*z-2/3)=2.
Раскрывая скобки получаем : 3/4-5/6*z-1/2*z+2/3=2, приводим к общему знаменателю: 12.
Умножаем каждый член уравнения на 12:
3/4*12-5/6*12*z-1/2*z*12+2/3*12=24
9--10z-6z+8=24
-16z+17=24
-16z=24-17
-16z=7
z=-7/16
б) 17-5у=-(17у+19)
Раскрываем скобки: 17-5у=-17у-19, -5у+17у=-19-17, 12у=-36, у= -36/12=-3
г) (2,6р-9,8)/р=4, умножаем обе части выражения на р≠0
2,6р-9,8=4р
2,6р-4р=9,8
-1,4р= 9,8
р=9,8/(-1,4)
р=-7