А) Построено сечение прямоугольного параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей середины рёбер A1B1, CC1, и вершину А (вложение 1).
Заданы точки А,Е и Р. За основу построения сечения принято свойство - в параллельных плоскостях линии сечения параллельны.
Проводим первый отрезок АЕ. В плоскости грани АА1В1В он проходит под углом к АА1, тангенс которого равен (1/2)/2 = 1/4. Под таким же углом к ребру СС1 проводим отрезок РТ. Точка Т разделит ребро CD основания на расстоянии (1/4) от точки С. Отрезок DT равен 1 – (1/4) = (3/4).
Далее проводим АТ по полученным точкам на основании АВСD и параллельно проводим под углом, тангенс которого равен (3/4) отрезок EF на верхнем основании. Этим определяется положение точки F, которая на ребре В1С1 выделит в отношении (1/2) / (3/4) = 4/6 = 2/3 отрезок B1F.
Отрезок FC1 = 1 – (2/3) = 1/3.
Б) Найдена площадь полученного сечения, из условия: ABCD-квадрат со стороной 1, а AA1=2 (вложение 2). Сечение дано в натуральную величину.
Оно разбито линией NP, параллельной АТ на 2 фигуры - трапецию и параллелограмм.
Положение точек Р и Т определено из подобия треугольников.
Так как точка Р находится на середине ребра СС1, то высоты трапеции и параллелограмма равны.
Длины оснований определяем по Пифагору.
АТ = √(1² + (3/4)²) = √(1 + (9/16)) = 5/4 = 1,25.
EF = √((1/2)² + (2/3)²) = √((1/4) + (4/9)) = √(9 + 16)/9) = 5/6.
Определяем наклонную высоту сечения. Для этого проводим секущую плоскость BB1L, перпендикулярную плоскости сечения.
Находим косинус угла D1FE: cos(D1FE) = (2/3) / (5/6) = 4/5, затем синус: sin(D1FE) = √(1 – (4/5)2) = 3/5.
Отсюда В1К = (2/3)*(3/5) = 2/5 = 0,4. Аналогично находим LQ = (3/4)*(3/5) = 9/20 = 0,45.
Отрезок BL = AT = 1,25, тогда проекция KQ на основание равна 1,25 – 0,4 – 0,45 = 0,4.
Наклонная высота сечения равна KQ = √(2² + 0,4²) = √4,16 ≈ 2,04.
Высоты частей сечения (трапеции и параллелограмма) равны по 2,04/2 = 1,02.
Находим площади трапеции S1 и параллелограмма S2 при условии NP = AT = 1,25.
S1 = ((EF + NP)/2)*1,02 = ((5/6)+1,25)/2)*1,02 = 1,041667*1,02 = 1,0625.
S2 = AT*1,02 = 1,25*1,02 = 1,275.
S = 1,0625 + 1,275 = 2,3375 кв.ед.
2017, 2018, ... 2030, (2031, ... , 20179999)
(2031, ... , 20179999), 20180000, ... , 2018013
В скобки взяты одинаковые части двух последовательностей. При вычитании произведений цифр каждого числа первой последовательности из произведений цифр этого же числа второй последовательности, мы получим нуль.
Осталось перемножить все цифры оставшихся чисел первой и второй последовательности и найти разность.
Произведение цифр каждого числа первой последовательности 2017, 2018, ..., 2029, 2030 равно нулю. Также равно нулю произведение цифр всех оставшихся чисел второй последовательности - 20180000, 20180001, ... , 20180013. Произведения цифр чисел равны нулю, т.к. в каждое число входит цифра 0.
Следовательно, сумма всех чисел, выписанных в тетрадь Фоксом, равно нулю.