AC=10 см
Пошаговое объяснение:
Розв'язання:
Нехай дано ∆АВС, МК - серединний перпендикуляр до сторони АВ,
т. М належить сторон!і ВС, ВС = 16 см, Р∆АМС = 26 см. Знайдемо сторону АС.
Розглянемо ∆АМК i ∆BMK.
1) АК = KB (т. К - середина АВ);
2) ∟AКM = ∟BKM = 90° (МК ┴ АВ);
3) MК - спільна.
Отже, ∆АМК = ∆BMК за I ознакою, з цього випливає, що AM = MB.
Р∆АМС = АС + АМ + СМ (т.я. АМ = МВ, то Р∆АМС = АС + МВ + СМ).
26 = АС + MB + CM, MB + СМ = СВ = 16 см.
26 = АС + 16; АС = 26 - 16; АС = 10 см.
Biдповідь: AC = 10 см.
1)а-345=455
а=455+345
а=895
895-345=455
2)630:(150-х)=70
х=630:70
х=90
х=150-90
х=60
630:{150-60}=70
3)35+(b+165)=658
b=658-165
b=493
b=493-35
b=458
35+(458+165)=659
4)х-5=10000
х=10000+5
х=10005
10000-5=10000