Проекция бокового ребра на основание равна (2/3)h, где h - высота основания. h = a*cos 30° = 12*(√3/2) = 6√3 см. (2/3)h = (2/3)*6√3 = 4√3 см. Отсюда находим высоту H пирамиды: Н = (2/3)h*tg30° = 4√3*(1/√3) = 4 см. Теперь находим апофему А, проекция которой тна основание равна (1/3)h = (1/3)*6√3 = 2√3 см. А = √(((1/3)h)² + H²) = √(12+16) = √28 = 2√7 см. Площадь So основания равна: So = a²√3/4 = 144√3/4 = 36√3 см². Площадь Sбок боковой поверхности равна: Sбок = (1/2)Р*А = (1/2)*3*12*2√7 = 36√7 см². Полная площадь S поверхности равна: S = So + Sбок = 36√3 + 36√7 = 36(√3 + √7) см².
Решим задачу на скорость, время и расстояние Дано: S(между поселками)=100км v(груз.)=70 км/ч v(легк.)=90 км/ч Найти: t=? часов легковая догонит грузовую Решение 1) Машины едут в одном направлении, выехали одновременно и легковая догоняет грузовую. Речь идет о скорости движения вдогонку: Vсбл.=v(легк.) - v(груз.)=90-70=20 (км/час) 2) Расстояние между двумя посёлками S=100 км, тогда легковая машина догонит грузовую через: t(время)=S(расстояние)/v(скорость)=100:20=5 (часов) ответ: легковая машина догонит грузовую через 5 часов.
h = a*cos 30° = 12*(√3/2) = 6√3 см.
(2/3)h = (2/3)*6√3 = 4√3 см.
Отсюда находим высоту H пирамиды: Н = (2/3)h*tg30° = 4√3*(1/√3) = 4 см.
Теперь находим апофему А, проекция которой тна основание равна (1/3)h = (1/3)*6√3 = 2√3 см.
А = √(((1/3)h)² + H²) = √(12+16) = √28 = 2√7 см.
Площадь So основания равна:
So = a²√3/4 = 144√3/4 = 36√3 см².
Площадь Sбок боковой поверхности равна:
Sбок = (1/2)Р*А = (1/2)*3*12*2√7 = 36√7 см².
Полная площадь S поверхности равна:
S = So + Sбок = 36√3 + 36√7 = 36(√3 + √7) см².