Углы, прилежащие к каждому из оснований равнобокой трапеции, равны. Доказательство. Докажем, например, равенство углов А и D при большем основании AD равнобокой трапеции АВСD. Для этой цели проведем через точку С прямую параллельную боковой стороне АВ. Она пересечет большое основание в точке М. Четырехугольник АВСМ являеся параллелограммом, т. к. по построению имеет две пары параллельных сторон. Следовательно, отрезок СМ секущей прямой, заключенный внутри трапеции равен её боковой стороне: СМ=АВ. Отсюда ясно, что СМ=СD, треугольник СМD - равнобедренный, РСМD=РСDM, и, значит, РА=РD. Углы, прилежащие к меньшему основанию, также равны, т. к. являются для найденных внутренними односторонним и имеют в сумме два прямых.
А1 3) 27 градусов А2 4) 75 градусов
Пошаговое объяснение:
А1
Треугольник КОС прямоугольный, а сумма углов в треугольнике равна 180 градусов. Из этого следует, что угол КОС = 180- (90+27)= 63.
Углы КОС и МОА - вертикальные, а следовательно равны. МОА=63 градуса.
Из рисунка следует, что треугольник МОА прямоугольный. По правилам сумма углов в треугольнике = 180. Следовательно угол ВАК = 180 - (90+63)=27
А2
Биссектриса делит угол пополам, следовательно угол КСВ=20 градусов.
Т.к. сумма углов в треугольнике равна 180 градусов угол В= 180-85-20=75 градусов