Линейные уравнения ах = b, где а ≠ 0; x=b/a.
Пример 1. Решите уравнение – х + 5,18 = 11,58.
– х + 5,18 = 11,58;
– х = – 5,18 + 11,58;
– х = 6,4;
х = – 6,4.
ответ: – 6,4.
Пример 2. Решите уравнение 3 – 5(х + 1) = 6 – 4х.
3 – 5(х + 1) = 6 – 4х;
3 – 5х – 5 = 6 – 4х;
– 5х + 4х = 5 – 3+6;
– х = 8;
х = – 8.
ответ: – 8.
Пример 3. Решите уравнение .
. Домножим обе части равенства на 6. Получим уравнение, равносильное исходному.
2х + 3(х – 1) = 12; 2х + 3х – 3 =12; 5х = 12 + 3; 5х = 15; х = 3.
ответ: 3.
Пример 4. Решите систему
Из уравнения 3х – у = 2 найдём у = 3х – 2 и подставим в уравнение 2х + 3у = 5.
Получим: 2х + 9х – 6 = 5; 11х = 11; х = 1.
Следовательно, у = 3∙1 – 2; у = 1.
ответ: (1; 1).
Замечание. Если неизвестные системы х и у, то ответ можно записать в виде ко
Пошаговое объяснение:
надеюсь правильно
х -скорость 1
у -скорость 2
t -время встречи 1 и 2
xt-yt=20
yt=10x ⇒t=10x/y, подставляем в 1 и 3 ур-е
xt+9x=9y
(10x/y)(х-у)=20 ⇒х²-ху-2у=0 ⇒у=х²/(х-2)
10x²/y=9у-9х ⇒9у²-9ху-10х²=0
9у²-9ху-10х²=0 решаем относительно у
д=(9х)²+9*4*10х²=441х²=(21х)²
у=(9х±21х)/18=30х/18; -12х/18 подставляем у
30х/18=5х/3=х²/(х-2)
3х²=5х²-10х
2х²=10х
х(х-5)=0 ⇒х=5; 0
-12х/18=-2х/3=х²/(х-2)
-2х²+4х=3х²
5х²-4х=0
х(х-4/5)=0
х=0,8; 0 у=х²/(х-2) ⇒у=0,64/(-1,2) нет решения
ответ: скорость первого 5 км/ч
В рыбный магазин привезли 4 бочки с сельдью,по 126 кг в каждой. За неделю магазин продал 2 бочки и ещё 88 кг. Остальную
сельдь продали в течение второй недели. Сколько килограммов сельди было продано за вторую неделю?
Первым делом найдем количество килограмм сельди в 4-х бочках, то есть сколько всего было. Для этого нужно умножить вес одной бочки на их количество.
126 * 4 = 504 (кг) - сельди всего.
Теперь узнаем сколько килограмм рыбы было продано, если это 2 бочки и 88 кг.
2 * 126 + 88 = 252 + 88 = 340 (кг) - было продано.
Или
504 : 2 + 88 = 252 + 88 = 340 (кг).
Если отнять вес сельди при привозе от той, которую продали, то узнаем остаток. Это и будет количество, которое продали в течении второй недели.
504 - 340 = 164 (кг).