Трехзначных чисел всего (100 - 999) = 900 штук. Из них хоть одну четверку содержат: 1) A B 4 (Здесь A ≠ 0 и 4, а B ≠ 4). А - 8 вариантов, B - 9 вариантов. n1 = 8 * 9 = 72 варианта. 2) C 4 D (C ≠ 0 и 4, а D ≠ 4) C - 8 Вариантов, D - 9 вариантов. n2 = 8*9 = 72 варианта. 3) 4 X Y (X и Y ≠ 4) X и Y - 9 вариантов. n3=9*9 = 81 вариант. 4) 4 A 4 (A ≠ 4) - 9 вариантов 5) A 4 4 (A ≠ 0 и 4) - 8 вариантов 6) 4 4 A - 10 вариантов По правилу суммы общее число вариантов: n = 72 + 72 + 81 + 9 + 8 + 10 = 252 варианта. p = 252 / 900 = 0,28
Трехзначных чисел всего (100 - 999) = 900 штук. Из них хоть одну четверку содержат: 1) A B 4 (Здесь A ≠ 0 и 4, а B ≠ 4). А - 8 вариантов, B - 9 вариантов. n1 = 8 * 9 = 72 варианта. 2) C 4 D (C ≠ 0 и 4, а D ≠ 4) C - 8 Вариантов, D - 9 вариантов. n2 = 8*9 = 72 варианта. 3) 4 X Y (X и Y ≠ 4) X и Y - 9 вариантов. n3=9*9 = 81 вариант. 4) 4 A 4 (A ≠ 4) - 9 вариантов 5) A 4 4 (A ≠ 0 и 4) - 8 вариантов 6) 4 4 A - 10 вариантов По правилу суммы общее число вариантов: n = 72 + 72 + 81 + 9 + 8 + 10 = 252 варианта. p = 252 / 900 = 0,28
0,6x + 2,3 = 0,4x - 1,7
0,6x - 0,4x = -2,3 - 1,7
0,2x = -4
x = -4 ÷ 0,2
x = -20
ответ : -20