Если я правильно понимаю задание, имеется в виду следующее: Из выражения вида cos a=1 надо получить собственно a. Для этого надо взять обратную тригонометрическую функцию: cos a = 1 arccos (cos a) = arccos (1) a = arccos 1 Теперь для нахождения а можно пользоваться единичной окружностью, таблицами, калькулятором, да чем угодно) a = 2*П*N, где N=0, 1... - принадлежащее множеству натуральных чисел. Т.е. мы получили не какой-то конкретный угол, а выражение для угла а (потому что таких углов, удовлетворяющих исходному равенству, вообще говоря, бесконечное множество). Теперь для оставшихся: cos a = 1/2 arccos (cos a) = arccos 1/2 a = arccos 1/2 a = П/3+2*П*N или a=5П/3+2*П*N.
cos a = 0 arccos (cos a) = arccos (0) a = arccos 0 a = П/2 + П*N
cos a = 1/6 arccos (cos a) = arccos 1/6 a = arccos 1/6 Вот тут я, честно говоря, пасую и не помню угла с таким косинусом. Но вообще картина будет напоминать угол с cos=1/2, т.е.: число+2*П*N или (2*П-число)+2*П*N
В данном случае , можно перебрать так как a>b>c>d и числа натуральные то максимальное возможное значение a=9, так как в случае a=10 два каких то числа будут равны , что не удовлетворяет условию задачи, минимальное возможно значение числа a=6 , так как если a<6 то одно из чисел b,c,d будет a<=b что так же не подходит Откуда возможны случаи 9+3+2+1=15 8+4+2+1=15 7+5+2+1=15 7+4+3+1=15 6+5+3+1=15 Проверяя каждое получаем что только в случае a=7, b=5, c=2, d=1 получаем 49-25+4-1=27
Из выражения вида cos a=1 надо получить собственно a. Для этого надо взять обратную тригонометрическую функцию:
cos a = 1
arccos (cos a) = arccos (1)
a = arccos 1
Теперь для нахождения а можно пользоваться единичной окружностью, таблицами, калькулятором, да чем угодно)
a = 2*П*N, где N=0, 1... - принадлежащее множеству натуральных чисел. Т.е. мы получили не какой-то конкретный угол, а выражение для угла а (потому что таких углов, удовлетворяющих исходному равенству, вообще говоря, бесконечное множество).
Теперь для оставшихся:
cos a = 1/2
arccos (cos a) = arccos 1/2
a = arccos 1/2
a = П/3+2*П*N или a=5П/3+2*П*N.
cos a = 0
arccos (cos a) = arccos (0)
a = arccos 0
a = П/2 + П*N
cos a = 1/6
arccos (cos a) = arccos 1/6
a = arccos 1/6
Вот тут я, честно говоря, пасую и не помню угла с таким косинусом. Но вообще картина будет напоминать угол с cos=1/2, т.е.:
число+2*П*N или (2*П-число)+2*П*N