Посчитаем сначала сколько всего возможных исходов: если сами числа 100 и 200 входят в условие, то всего возможных чисел 101. 1. из них нечетных чисел 50, значит вероятность нечетного 50/101. 2. посчитаем, сколько чисел от 100 до 200 содержат 3ки: во-первых, это числа вида 103, 113 и тд. во вторых, это 130, 131, 132 и тд. сколько всего? 19 таких чисел. тогда вероятность равно 19/101 3. сколько чисел в промежутке от 100 до 200 включительно являются кубом целого числа? такое число только одно 125 - куб числа 5. куб числа 6 = 216 и не входит в промежуток. куб числа 4 равен 64 и не входит в промежуток. значит, вероятность равна 1/101 4. сколько чисел с суммой цифр больше трех входят в промежуток? для этого сначала посчитаем, сколько чисел с суммой меньше или равной трем туда входит. это числа 100, 101, 102, 110, 111, 120. то есть их всего 6. значит, все остальные числа из промежутка имеют сумму цифр больше трех. 101-6=95 - это количество чисел с суммой цифр больше трех. тогда вероятность равна 95/101
Допустим, что в первом взвешивании на чашки весов положили по 4 монеты и наблюдается равновесие. Тогда фальшивая монета находится среди остальных 5 монет, причем может быть как легче, так и тяжелее настоящей монеты. Всего, таким образом, имеется 2*5= 10 вариантов. Но оставиеся 2 взвешивания могут иметь лишь 3(в квадрате) = 9 различных исходов. Если же в первом взвешивании на чашки весов положили по 5 монет, то в случае неравновесия ( Л не равно П) снова остается 10 вариантов. Действительно, если фальшивая монета легче, то она находится среди 5 монет на левой чаше, если тяжелее - то среди 5 монет на правой чаше.