Правило из учебника гласит: наименьшее общее кратное нескольких чисел - это такое наименьшее число, которое делится на каждое из данных чисел. Для нахождения НОК нескольких чисел поступают так: 1) раскладывают каждое из чисел на простые множители; 2) выписывают множители одного из чисел; 3) дополняют произведение теми множителями, которые есть в других числах, а в первом их нет; 4) находят полученное произведение. Например, найдем НОК(24, 60, 48). 24=2·2·2·3 60=2·2·3·5 48=2·2·2·2·3 НОК(24,60,48)=2·2·2·3·5·2=240
так как AB=CD то CD=4 а периметр ADC= AD+DC+AC=7+6+4=17см Прямая АВ - секущая при ВС и АД. При этом равные по условию ∠ВАД=∠АВС - внутренние накрестлежащие. Признак параллельных прямых Если внутренние накрест лежащие углы равны, то прямые параллельны. ⇒ АД параллельна ВС. Соединим А и С, Д и В. В четырехугольнике АВСД стороны АД и ВС параллельны и по условию равны. Если противоположные стороны четырехугольника равны и параллельны, этот четырехугольник - параллелограмм. а )треугольник САД может быть равен ВДА только если четырехугольник АВСД - квадрат. б)∠ДВА =∠САВ как накрестлежащие при параллельных ВД и АС и секущей АВ. в) ∠ВАД=∠ВАС только в том случае, если АВСД - ромб. г) если О - точка пересечения СД и АВ, угол АОВ - развернутый и не может быть равен углу ВСА.
Для нахождения НОК нескольких чисел поступают так:
1) раскладывают каждое из чисел на простые множители;
2) выписывают множители одного из чисел;
3) дополняют произведение теми множителями, которые есть в других числах, а в первом их нет;
4) находят полученное произведение.
Например, найдем НОК(24, 60, 48).
24=2·2·2·3
60=2·2·3·5
48=2·2·2·2·3
НОК(24,60,48)=2·2·2·3·5·2=240