Cреди зашифрованных цифр не может быть нуля, иначе одна часть равенства Э·Х = М·О·Р·О·З равна нулю, а другая нет. Цифры 5 и 7 также не могут участвовать в ребусе. В противном случае одна часть рассматриваемого равенства будет делиться на 5 (или на 7), а другая – нет. Таким образом, остаются цифры 1, 2, 3, 4, 6, 8, 9. В ребусе должны участвовать шесть из них, поэтому в нем обязательно присутствуют цифры, кратные 3. Следовательно, каждая из частей равенства должна быть кратна 3.
Докажем, что в правой части первого равенства не может быть цифр 8 и 9. Пусть это не так и, например, М = 9, тогда левая часть равенства должна делиться на 9, поэтому Э·Х = 3·6 = 18. В этом случае О·Р·О·З = 2, что невозможно. Если же M = 8, то Э·Х = 2·4 или Э·Х = 4·6. Первый случай невозможен, поскольку Э·Х не делится на 3, а второй – так как тогда О·Р·О·З = 3.
Допустим, что цифра 9 участвует в ребусе, тогда она находится в левой части рассматриваемого равенства. Следовательно, Э·Х = 9·4 или Э·Х = 9·8. В первом случае, сомножители правой части определяются однозначно: Э·Х = 9·4 = 3·6·12·2. Равенство Э + Х = М + О + Р + О + З выполняется:
9 + 4 = 3 + 6 + 1 + 1 + 2.
Во втором случае возможны три варианта: Э·Х = 9·8 = 1·2·4·3², Э·Х = 9·8 = 1·3·6·2² или Э·Х = 9·8=1²·3·6·4. Но ни для одного из них равенство
Э + Х = М + О + Р + О + З не выполняется.
Осталось рассмотреть случай, когда в левой части равенства нет цифры 9 (и в ребусе она вообще не участвует). Тогда в левой части равенства обязательно есть цифра 8, и поэтому Э·Х = 8·3 = 24 или Э·Х = 8·6. В первом случае среди М, О, Р и З есть все цифры 1, 2, 4, 6, но 1·2·4 ·6 > 24, то есть этот случай невозможен. Во втором случае возможно такое равенство: Э·Х = 8·6 = 1·3·2²· 4, но 8 + 6 ≠ 1 + 3 + 2 + 2 + 4.
Таким образом, возможен только один случай: Э·Х = 9·4 = 36, то есть Э·Х + М· О·Р·О·З = 72.
I am proud of my country. This is a multi-ethnic state of Kazakhstan. It ranks ninth in world's largest site! Kazakhstan is a big state, built in a difficult environment. Are steppes, semi-deserts and deserts.
Kazakhstan gained independence about twenty years ago, after the collapse of the Soviet Union. But the national culture of Kazakhstan many centuries ago began to create the Kazakhs, nomads, who spend most of life spent in the saddle. Endless steppes and semi-deserts, overgrown fescue, feather-grass, wormwood and tercica, were their only riches.
Now our country is home to people of different cultures: Kazakhs, Russians, Uzbeks, Ukrainians, Uighurs, Tatars and others. Every resident of Kazakhstan knows the Kazakh language is the language of the Kazakh nation. Also recognized as the official language of Russian as language of interethnic communication. People in Kazakhstan live free, and not crowded. There are a lot of lands and people on them have a little.
Пошаговое объяснение:
Cреди зашифрованных цифр не может быть нуля, иначе одна часть равенства Э·Х = М·О·Р·О·З равна нулю, а другая нет. Цифры 5 и 7 также не могут участвовать в ребусе. В противном случае одна часть рассматриваемого равенства будет делиться на 5 (или на 7), а другая – нет. Таким образом, остаются цифры 1, 2, 3, 4, 6, 8, 9. В ребусе должны участвовать шесть из них, поэтому в нем обязательно присутствуют цифры, кратные 3. Следовательно, каждая из частей равенства должна быть кратна 3.
Докажем, что в правой части первого равенства не может быть цифр 8 и 9. Пусть это не так и, например, М = 9, тогда левая часть равенства должна делиться на 9, поэтому Э·Х = 3·6 = 18. В этом случае О·Р·О·З = 2, что невозможно. Если же M = 8, то Э·Х = 2·4 или Э·Х = 4·6. Первый случай невозможен, поскольку Э·Х не делится на 3, а второй – так как тогда О·Р·О·З = 3.
Допустим, что цифра 9 участвует в ребусе, тогда она находится в левой части рассматриваемого равенства. Следовательно, Э·Х = 9·4 или Э·Х = 9·8. В первом случае, сомножители правой части определяются однозначно: Э·Х = 9·4 = 3·6·12·2. Равенство Э + Х = М + О + Р + О + З выполняется:
9 + 4 = 3 + 6 + 1 + 1 + 2.
Во втором случае возможны три варианта: Э·Х = 9·8 = 1·2·4·3², Э·Х = 9·8 = 1·3·6·2² или Э·Х = 9·8=1²·3·6·4. Но ни для одного из них равенство
Э + Х = М + О + Р + О + З не выполняется.
Осталось рассмотреть случай, когда в левой части равенства нет цифры 9 (и в ребусе она вообще не участвует). Тогда в левой части равенства обязательно есть цифра 8, и поэтому Э·Х = 8·3 = 24 или Э·Х = 8·6. В первом случае среди М, О, Р и З есть все цифры 1, 2, 4, 6, но 1·2·4 ·6 > 24, то есть этот случай невозможен. Во втором случае возможно такое равенство: Э·Х = 8·6 = 1·3·2²· 4, но 8 + 6 ≠ 1 + 3 + 2 + 2 + 4.
Таким образом, возможен только один случай: Э·Х = 9·4 = 36, то есть Э·Х + М· О·Р·О·З = 72.