М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Lera2010K
Lera2010K
23.09.2020 06:19 •  Математика

Сумма произведения чисел 15 и 2 и частного чисел 42 и 6

👇
Ответ:
Ника6660
Ника6660
23.09.2020

15*2 + 42/6= 30+7=37

ответ 37

4,5(70 оценок)
Ответ:
Haranmeu
Haranmeu
23.09.2020

15*2+42/6=30+7=37

сумма это +

произведение это *

частное это /

ответ 37

4,4(41 оценок)
Открыть все ответы
Ответ:
alenzhaparkulov
alenzhaparkulov
23.09.2020
1) Находим область определения: вся числовая ось, кроме х = -5 / 4 (при этом значении знаменатель превращается в ноль).
2) Находим точки пересечения с осями:
х = 0  у = -3/5 это точка пересечения с осью у.
у = 0   надо числитель приравнять 0:  2х - 3 = 0   х = 3/2   это точка пересечения с осью х.
3) Исследуем функцию на парность или непарность:
Функция называется парной, если для любого аргумента с его областью обозначения будет f(-x)=f(x), или же непарной - если для любого аргумента с областью обозначения будет f(-x)=-f(x). К тому же, график парной функции будет симметричным относительно оси ординат, а график непарной - симметричным относительно точки (0;0). 
Правда, чаще встречается название этих свойств функции как чётность и нечётность.
2*x - 3 -3 - 2*x ---------- = ---------- 1 1 (4*x + 5) (5 - 4*x) - Нет 2*x - 3 -3 - 2*x ---------- = - ---------- 1 1 (4*x + 5) (5 - 4*x) - Нет, значит, функция не является ни чётной, ни нечётной.
4) Исследуем функцию на монотонность: — это значит выяснить, на каких промежутках области определения функция возрастает, а на каких убывает.
Если производная положительна, то функция возрастает и наоборот.
\frac{d}{dx} ( \frac{2x-3}{4x+5} )= \frac{22}{(4x+5)^2}.
Так как переменная в квадрате, то производная всегда положительна, а функция возрастающая на всей числовой оси (кроме х = -5/4).
5) Находим экстремумы функции:
Так как переменная находится в знаменателе, то производная не может быть равна нулю. Следовательно, функция не имеет ни максимума, ни минимума.
6) Исследуем функции на выпуклость, вогнутость:
Если вторая производная меньше нуля, то функция выпуклая, если производная больше нуля - то функция вогнутая.
Вторая производная равна f''= \frac{-176}{(4x+5)^3}.
При x > (-5/4) функция выпуклая, при x < (-5/4) функция вогнута.
7) Находим асимптоты графика функции:
Горизонтальные асимптоты найдём с пределов данной функции при x->+oo и x->-oo 2*x - 3 lim ------- = 1/2 x->-oo4*x + 5 значит,уравнение горизонтальной асимптоты слева:y = 1/2 2*x - 3 lim ------- = 1/2 x->oo4*x + 5 значит,уравнение горизонтальной асимптоты справа:y = 1/2Наклонные асимптотыНаклонную асимптоту можно найти, подсчитав предел функции (2*x - 3)/(4*x + 5), делённой на x при x->+oo и x->-oo 2*x - 3 lim ----------- = 0 x->-oox*(4*x + 5) значит,наклонная совпадает с горизонтальной асимптотой справа 2*x - 3 lim ----------- = 0 x->oox*(4*x + 5) значит,наклонная совпадает с горизонтальной асимптотой слева
8) Можно найти дополнительные точки и построить график
График и таблица точек приведены в приложении.
1. исследовать функцию и построить график y(x)=(2x-3)/(4x+5) огромная решить , которое выполняется с
4,4(10 оценок)
Ответ:
madam7952
madam7952
23.09.2020

2)

Доказательство "⇒".

Пусть у нас дано A⊂B∩C, докажем тогда, что

2.1) A⊂B

и

2.2) A⊂C.

2.1) x∈A⊂B∩C, ⇒ x∈B∩C⊂B, ⇒ x∈B. чтд.

2.2) x∈A⊂B∩C, ⇒ x∈B∩C⊂C, ⇒ x∈C. чтд.

Доказательство "<=".

Пусть у нас дано A⊂B и A⊂C. Докажем тогда, что

A⊂B∩C.

Пусть x∈A, тогда по условию (A⊂B и A⊂C), имеем

x∈B и x∈C, ⇔ x∈B∩C. чтд.

3)

Доказательство "⇒".

Пусть у нас дано A∩B⊂C. Докажем тогда, что

A\subset B^c \cup C

Пусть x∈A. Тут возможны два варианта: x∈B либо x∉B.

Первый случай: x∈A и x∈B, ⇔ x∈A∩B⊂C, ⇒ x∈C⊂ B^c \cup C, ⇒

x\in B^c \cup C

Второй случай: x∈A и x∉B, ⇒ x∈A и x\in B^c, ⇒

x\in A\cap B^c \subset B^c, ⇒

x\in B^c \subset B^c \cup C, ⇒

x\in B^c \cup C

чтд.

Доказательство "<=".

Пусть у нас дано A\subset B^c \cup C. Докажем тогда, что

A\cap B \subset C.

Пусть x∈A∩B ⊂A, ⇒ x∈A⊂ B^c \cup C, ⇒

x\in B^c \cup C, ⇒ x\in B^c или x\in C

Первый случай: x\in B^c, ⇔ x∉B. Но у нас x∈A∩B⊂B, то есть x∈B. То есть имеем x∉B и x∈B, ⇒ x∈∅⊂C, ⇒ x∈C.

Второй случай: x∈C. То есть требуемое уже доказано. чтд.

4,5(4 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ