Глядя на уравнение, я сразу заметил следующее особенности: 1) цифры нигде не повторяются, поскольку буквы разные 2) число справа точно больше 1023, поскольку если бы оно было меньше, то тогда бы слева должны были быть 0. Я начал решение с того, что задал некоторые интервалы для букв. Например, рассмотрим букву М поскольку это старший разряд.Поскольку мы умножаем четырехзначное число на два и получаем также четырехзначное число, то можно сделать вывод, что М должно лежать в полуинтервале [0, 5). Теперь начнем подставлять значения: 1 вариант - М=0 Заметим, что А точно не будет 0 или 5, т.к. в этом случае Н получается равен 0. Поскольку М=0, то У должен находиться на отрезке [5, 9], поскольку если бы У был меньше, например, 4, то тогда бы число получилось меньше 1000. Теперь будем подставлять значения У 1.1. У = 5 Допустим, наше число 0512, то значит справа будет число 1024, что будет не верно, т.к. числа 0, 1 и 2 не могут встречаться более одного раза. Заметим, что буква Х должна быть точно больше 5, поскольку до тех пор пока она меньше, у нас буква Л равна 0. Подставляем дальше: 0561 х 2 = 1132 – не подходит. Видно, что нам надо, чтобы число справа было как минимум больше 1234, поэтому делим его на 2 и находим то число, от которого начинаем подставлять, получаем: 617. Как видим, У = 5 нам не подошло.1.2. У = 6 Подставляем 0617 х 2 = 1234, видим, что Х должно быть больше 3, т.к. С = 1, а Л = 2. 0631 х 2 = 1262 – не подходит, 0634 х 2 = 1268 – не подходит, 0637 х 2 = 1274 – подходит.Как видим, мы довольно быстро нашли первое решение: М=0, У=6, Х=3, А=7, С=1, Л=2, О=7, Н=4.На самом деле, решая таким перебором, Вы должны найти решений в районе 80, при этом это не займет много времени, поскольку мы отсеиваем множество вариантов. Вот ещё парочка верных решений: 1345 х 2 = 2690, 1354 х 2 = 2708, 4865 х 2 = 9730.
1) Частота дискретизации 44.1 кГц означает, что в секунду делается 44 100 отсчетов. Разрешение 16 бит (т.е. 16/8=2 байта) требует для хранения каждого отсчета 2 байта, а для хранения информации за 1 секунду - 2 х 44 100 = 88 200 байт. Две минуты - это 2 х 60 = 120 секунд и тогда общий объём составит 88 200 х 120 = 10 584 000 байт или 10 584 000 / 1024 = 10 335.94 Кбайт, или 10 335.94 / 1024 = 10.1 Мбайт И все это - для одного канала записи (монофонической). Если запись стереофоническая - то каналов два и потребуется 2 х 10.1 = 20.2 Мбайта и т.д. 2) В этой задаче много неизвестных, а ход её решения обратный по отношению к предыдущей задаче. 2.6 Мбайта = 2.6 х 1024² = 2 726 297.6 байт. В одной минуте 60с, поэтому объем информации за одну секунду не может превышать 2 726 297.6 / 60 = 45 438.3 байт. А теперь это число нужно разделить на произведение трех значений: количества каналов записи, частоты дискретизации в герцах и разрешения (количества байт, отводимых для хранения одного отсчета). Все эти значения нам неизвестны, поэтому у задачи нет однозначного решения. Например, если канал один, а разрешение равно 1 байту, то частота дискретизации не может превышать 45 438 байт, что примерно соответствует общепринятой частоте 44 100 Гц (44.1 кГц).
1) Частота дискретизации 44.1 кГц означает, что в секунду делается 44 100 отсчетов. Разрешение 16 бит (т.е. 16/8=2 байта) требует для хранения каждого отсчета 2 байта, а для хранения информации за 1 секунду - 2 х 44 100 = 88 200 байт. Две минуты - это 2 х 60 = 120 секунд и тогда общий объём составит 88 200 х 120 = 10 584 000 байт или 10 584 000 / 1024 = 10 335.94 Кбайт, или 10 335.94 / 1024 = 10.1 Мбайт И все это - для одного канала записи (монофонической). Если запись стереофоническая - то каналов два и потребуется 2 х 10.1 = 20.2 Мбайта и т.д. 2) В этой задаче много неизвестных, а ход её решения обратный по отношению к предыдущей задаче. 2.6 Мбайта = 2.6 х 1024² = 2 726 297.6 байт. В одной минуте 60с, поэтому объем информации за одну секунду не может превышать 2 726 297.6 / 60 = 45 438.3 байт. А теперь это число нужно разделить на произведение трех значений: количества каналов записи, частоты дискретизации в герцах и разрешения (количества байт, отводимых для хранения одного отсчета). Все эти значения нам неизвестны, поэтому у задачи нет однозначного решения. Например, если канал один, а разрешение равно 1 байту, то частота дискретизации не может превышать 45 438 байт, что примерно соответствует общепринятой частоте 44 100 Гц (44.1 кГц).
1) цифры нигде не повторяются, поскольку буквы разные
2) число справа точно больше 1023, поскольку если бы оно было меньше, то тогда бы слева должны были быть 0.
Я начал решение с того, что задал некоторые интервалы для букв. Например, рассмотрим букву М поскольку это старший разряд.Поскольку мы умножаем четырехзначное число на два и получаем также четырехзначное число, то можно сделать вывод, что М должно лежать в полуинтервале [0, 5). Теперь начнем подставлять значения:
1 вариант - М=0
Заметим, что А точно не будет 0 или 5, т.к. в этом случае Н получается равен 0. Поскольку М=0, то У должен находиться на отрезке [5, 9], поскольку если бы У был меньше, например, 4, то тогда бы число получилось меньше 1000.
Теперь будем подставлять значения У
1.1. У = 5
Допустим, наше число 0512, то значит справа будет число 1024, что будет не верно, т.к. числа 0, 1 и 2 не могут встречаться более одного раза. Заметим, что буква Х должна быть точно больше 5, поскольку до тех пор пока она меньше, у нас буква Л равна 0.
Подставляем дальше: 0561 х 2 = 1132 – не подходит. Видно, что нам надо, чтобы число справа было как минимум больше 1234, поэтому делим его на 2 и находим то число, от которого начинаем подставлять, получаем: 617. Как видим, У = 5 нам не подошло.1.2. У = 6
Подставляем 0617 х 2 = 1234, видим, что Х должно быть больше 3, т.к. С = 1, а Л = 2.
0631 х 2 = 1262 – не подходит,
0634 х 2 = 1268 – не подходит,
0637 х 2 = 1274 – подходит.Как видим, мы довольно быстро нашли первое решение:
М=0, У=6, Х=3, А=7, С=1, Л=2, О=7, Н=4.На самом деле, решая таким перебором, Вы должны найти решений в районе 80, при этом это не займет много времени, поскольку мы отсеиваем множество вариантов.
Вот ещё парочка верных решений: 1345 х 2 = 2690, 1354 х 2 = 2708, 4865 х 2 = 9730.