b) x+y+10
Пошаговое объяснение:
Уравнение с двумя переменными - это уравнение с двумя разными буквами.
t - время, которое ехал от А до С мотоциклист и от С до В автомобиль
t+1,5 - время которое ехал до С автомобиль
300: (t+t+1,5) = 300: (2t+1,5) - скорость автомобиля
расстояние от А до С - 60*t или 300 * (t+1,5) : (2t+1,5)
Приравняем и получим уравнение:
Приведем к общему знаменателю и с учетом того, что знаменатель не может быть равен 0 получим:
60t (2t+1,5) = 300 (t+1,5)
120t^2+90t=300t+450
120t^2-210t-450=0
12t^2-21t-45=0
4t^2-7t-15=0
Решим это уравнение, получим 2 корня t=-1,25 и t=3
t=-1,25 - не подходит, т. к. время не может быть меньше 0.
Значит расстояние от А до С равно 60*3 = 180 (км)
С одного сайта взял
Предложу решение, но мне кажется, есть что-то попроще, но не могу найти.
Рассуждаем так. Допустим до встречи 1 шёл со скоростью х км/ч, тогда второй шёл со скоростью (10-х) км/ч ( потому что км за 5 часов, значит их общая скорость была 10 км/ч)
За 5 часов х км, ему осталось идти (50-5х) км, тогда второму осталось идти 50 -(50-5х) = 5х (км) (т.к. после встречи им всё равно в сумме надо 50 км пройти.
их новые скорости: у первого:( х-1) (км/ч), у второго 1+(10-х) = 11-х (км/ч)
Теперь делим оставшиеся расстояния на скорости , получим время и зная, что первый пришёл раньше на 2 ч. составляем уравнение:
5х/(11-х) - (50-5х)/(х-1) = 2
5х/(11-х) - (50-5х)/ (х-1) - 2 = 0
приводим к общему знаменателю это (11-х)(х-1), и я буду писать только числитель:
5х(х-1) -(50-5х)(11-х) - 2(11-х)(х-1) = 0 ( т.к. дробь равно 0, если числитель равен 0, а знаменатель не равен 0)
5х^2-5x-550+55x+50x-5x^2-22x+22+2x^2-2x = 0
2x^2+76x-528 = 0
x^2+38x -264 = 0
D=2500
x=(-38-50)/2 -видно, что отриц. число, нам не подходит
или х= (-38+50)/2 = 6 (км/ч)
ответ: 6 км/ч
скорее всего ето Б х+у+10=0