М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
katysha087
katysha087
16.10.2020 21:24 •  Математика

Найдите длину стороны квадрата если его периметр на 8 см больше периметра прямоугольного​

👇
Открыть все ответы
Ответ:
Elvira2018
Elvira2018
16.10.2020
Далее в тексте будем подразумевать под биквадратным трёхчленом и его коэффициентами выражение t^2 - 8 t + [7-a] = 0 , где под t подразумевается квадрат переменной x^2 , т.е. t = x^2 , а его корнями t_{1,2} – квадраты искомых корней, если они различны, или его чётным корнем t_o = x^2_{1,2} , если корень биквадратного трёхчлена t_o – единственный.

Наше уравнение вообще имеет решения только тогда, когда дискриминант биквадратного трёхчлена неотрицателен, при этом, в силу чётности биквадратного уравнения, удобно находить чётный дискриминант через половину среднего коэффициента и без множителей в последнем слагаемом, т.е. по формуле D_1 = ( \frac{b}{2} )^2 - ac , тогда D_1 = 4^2 - [7-a] = 9 + a . Потребуем, чтобы D_1 \geq 0 , откуда следует, что 9 + a \geq 0 ; \ \ \Rightarrow a \geq -9 .

Уравнение не может стать просто квадратным, оно всегда будет иметь старшей степенью 4, поскольку старший коэффициент фиксирован и равен единице. Но биквадратное уравнение может выродится, когда его дискриминант равен нолю, что происходит при a = -9 , а корень биквадратного трёхчлена станет чётным t_o = 4 , давая два искомых корня x_{1,2} = \pm 2 . Это значение a = -9 как раз уже и есть одно из искомых решений для параметра a .

Когда дискриминант больше нуля и биквадратное уравнение не вырождено, то квадратов искомых корней x^2 , всегда будет два – левый и правый (меньший и больший), однако при некоторых обстоятельствах левый квадрат искомых корней будет отрицательным, а значит, не будет давать пару искомых корней. Среднеарифметическое квадратов искомых корней x^2 , по теореме Виета, в применении к биквадратному уравнению, будет равно числу, противоположному половине среднего коэффициента, т.е. оно равно -\frac{b}{2} = -\frac{-8}{2} = 4 . Отсюда следует, что правый квадрат искомых корней x^2 , – всегда положителен, а значит, всегда даёт два корня при положительном дискриминанте.

Левый же квадрат искомых корней отрицателен тогда и только тогда, когда этот левый квадрат лежит левее оси ординат, т.е. левее точки x = 0 . А значит, значение всего трёхчлена x^4 - 8 x^2 + [7-a] взятое от x = 0 должно давать отрицательное значение, т.е. располагается в нижней межкорневой дуге параболы биквадратного трёхчлена.

Отсюда: 0^4 - 8 \cdot 0^2 + [7-a] < 0 ;

7 - a < 0 ;

a 7 ;

О т в е т : a \in \{ -9 \} \cup ( 7 ; +\infty ) .
4,5(18 оценок)
Ответ:
87074552993
87074552993
16.10.2020
РЕШЕНИЕ
Сумма и разность векторов .
Дано:
Vk = 18 км/ч - собственная скорость катера
Vr = 1.5 км/ч -  скорость реки
Пишем такие выражения.
V+ = Vk+Vr = 18+1.5 = 19.5 км/ч - скорость по течению
V- = Vk - Vr = 18 - 1.5 = 16.5 км/ч - скорость против течения
ОТВЕТЫ
а) Дано
V+ = 19.5   V-=16.5
Найти Vr=? 
Решение Vr = (V+  - V-)/2 = (19.5-16.5):2 = 1.5 -ответ
б) Дано
Vr = 1.5    V+ = 19.5
Найти V- = ?
Решение   V- = V+ -2*Vr = 19.5 - 2*1.5 = 16.5 - ответ
в)  Дано
V+ = 19.5     V- = 16.5
Найти  (V+ - V-) = ?
Vr = ?
V+ - V- = (Vk+ Vr) - (Vk-Vr) = 2*Vr= 19.5-16.5 = 3 км/ч - ОТВЕТ
Vr = 3:2 = 1.5 км/ч - ОТВЕТ 
Собственная скорость катера 18 км/ч. отметьте её на координатном луче. вычислите и отметьте на этом
4,7(53 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ