5/6 >5/8,_ 17/30< 2/3,_ 79/68 >5/113,_ 11/12 < 19/20,_ 2³/₁₆ < 2⁹/₁₆
Пошаговое объяснение:
1) При сравнении дробей с одинаковым числителем больше та дробь, знаменатель которой меньше.
5/6> 5/8 ( На чем больше частей делится что-то, тем меньше получится каждая часть).
2) 17/30 и 2/3 приведем к общему знаменателю:
17/30 <20/30 ( при сравнении дробей с равными знаменателями больше та, у которой больше числитель. Если что-то разделить на 30 частей , то 17 частей меньше. чем 20 таких же).
3) 79/68 и 5/113
Первое число - неправильная дробь, оно больше едииницы. Второе - меньше единицы. Поэтому
79/68 > 5/113
4) 11/12 и 19/20
Первому числу до целого недостает 1/12, второму 1/20.
Т.к. 1/12> 1/20, то 19/20>11/12 ( см. объяснение п. 1)
5) Из смешанных чисел с равной целой частью больше та, у которого больше дробная часть. 2=2, 9/16>3/16, поэтому 2 целых и 3/16 меньше, чем 2 целых и 9/16.
33/65
Пошаговое объяснение:
так как sin(a+b)=sin(a)*cos(b)+sin(b)*cos(a),
то sin(a+b)=
так как:
1) sin (a) = 3/5 (по условию)
2) cos(b) = -5/13 (по условию)
отметим, что так как а принадлежит 2-ой координатной четверти на графике, то sin(a)>0, cos(a)<0, но b принадлежит 3-ей координатной четверти, поэтому sin(b)<0, cos(b)<0
при этом sin(х) ^2 + cos (х) ^2=1
поэтому:
3) sin(b) ^2 + (-5/13)^2=1
sin(b) ^2+25/169 = 1
sin(b) ^2 = 1 - 25/169
sin(b) ^2 = 144/169 = (12/13)=(-12/13), при этом sin(b)<0
следовательно sin(b) = -12/13
4) cos(a) ^2 + (3/5)^2 = 1
cos(a) ^2 + 9/25 =1
cos(a) ^2 = 1 - 9/25
cos(a) ^2 = 16/25 = (4/5)^2 = (-4/5)^2, при этом cos(a)<0
следовательно cos(a) = -4/5
5) sin(a)*cos(b)+sin(b)*cos(a) =
= (3/5) * (-5/13) + (-12/13) * (-4/5) = -15/65 + 48/65 = (48-15)/65 = 33/65