1)100%-9%=(100%+x)-y y=((100+x)*x)/100 В данной системе уравнений показано, что х - число процентов на которое подорожали акции в среду, а y - число процентов, на которое акции подешевели. Говорится, что подешевели и подорожали на одинаковое число процентов, но x и y - два разных числа. Сейчас объясню на примере. "Подорожал на 1 процент, а потом подешевел на 1 процент товар. Изначально он стоил 100%, потом подорожал на 1%, стал равным 101%. Потом подешевел на 1%, то есть мы убираем 1% от 101%, значит это будет 101 - 1,01 = 99,9%. Как видите 1 и 1,01 - это два разных числа, как в данном примере x и y." Вернемся к примеру. Подставляя второе уравнение в первое, получим: 100-9=(100+x)-((100+x)*x)/100 Отсюда находим x: х=30% То есть, изначально поднялась цена на 30% = 130% Потом упала на 30%, то есть 30% от 130% = 39. 130-39=91. Как видно акции стали на 9% дешевле. 2) 7x=1.05y y=6.66666666x x=y/6.66666666=0.15y 6x=0.9y Следовательно, на 10%
1) Дробь X = m/n (m - 1)/(2n) = 1/11 Из свойства пропорции получаем 11(m-1) = 2n m - двузначное и (m-1) - четное, потому что 11 - нечетное. Значит, m - нечетное. И n делится на 11. Минимальное m = 11 (m-1)/(2n) = 10/(2n) = 1/11 2n = 11*10 = 110, n = 55 Тогда X = 11/55 = 1/5, а Х должно быть несократимо. Пусть m = 13, тогда (m-1)/(2n) = 12/(2n) = 1/11 2n = 11*12 = 132, n = 66 X = 13/66 ответ: 13+66 = 79
2) Про Катю я уже решал. Кучек 60, конфет 1952. У Кати всего N конфет - неизвестно, сколько. В кучках у неё арифметическая прогрессия. a1 = 2; d = 1. В последней n-ной кучке a(n) = a1+d(n-1) = 2+1(n-1) = n+1 И это 1/32 часть всех конфет. n+1 = N/32. Общее количество кучек и конфет N + n = 2012. Получаем систему { N = 32(n + 1) = 32n + 32 { N + n = 32n + 32 + n = 33n + 32 = 2012 n = (2012 - 32)/33 = 1980/33 = 60 - кучек. N = 32n + 32 = 32*60 + 32 = 1952 - конфет.
3) Числа a, b, c. a = 3c + 7; b = 2c + 3 a + b + c = 3c + 7 + 2c + 3 + c = 100 6c + 10 = 100 c = 90/6 = 15; a = 3*15 + 7 = 52; b = 2*15 + 3 = 33
4) Не знаю.
5) Чтобы два государства не имели общей границы, одно должно находиться сежду двух других. Для этого две стороны острова должны быть как можно ближе друг к другу. Треугольник должен быть тупоугольным. Границы проходят по серединным перпендикулярам к отрезкам, соединяющим столицы.
в 1 см-100м-0,1км
в 1 см-2500м-2,5км
в 1 см-350000м-350км