4. Переместительный (коммутативный) закон сложения: m + n = n + m . Сумма не меняется от перестановки её слагаемых. Переместительный (коммутативный) закон умножения: m · n = n · m . Произведение не меняется от перестановки его сомножителей. Сочетательный (ассоциативный) закон сложения: ( m + n ) + k = m + ( n + k ) = m + n + k . Сумма не зависит от группировки её слагаемых. Сочетательный (ассоциативный) закон умножения: ( m · n ) · k = m · ( n · k ) = m · n · k . Произведение не зависит от группировки его сомножителей.
Распределительный (дистрибутивный) закон умножения относительно сложения: ( m + n ) · k = m · k + n · k .
5. (a+b)*c=a*c+b*c
6. Уравнение – это равенство, содержащее одну или несколько переменных.
7. Вычислить значение перемннной.
11. Приводим к одному знаменателю. У какой дроби числитель больше числителя другой дроби, та и больше.
Бируанг - самый «древесный» вид медвежьих. Благодаря мощным когтям на четырех лапах они отлично лазят по деревьям. Малайский медведь наиболее активен в ночное время. Эти забавные животные проводят большую часть жизни в ветвях деревьев. Здесь же, на высоте 2-7 м, они строят прочные настилы (гнезда), на которых отдыхают, спят, а также принимают солнечные ванны.На материке этого мишку не считают опасным. Жители уверены, что нападения, о которых идет речь, могли быть совершены только медведицами, защищающими свое потомство. На самом деле малайские медведи - существа робкие и безобидные, когда их не беспокоят. Даже самки с детенышами всячески избегают встречи с человеком. На родине бируанга часто держат в неволе как доброго и забавного зверя, позволяют с ним играть детям.
1. Числа, используемые при счёте.
2. Часть отрезка, ограниченная двумя точками.
4. Переместительный (коммутативный) закон сложения: m + n = n + m . Сумма не меняется от перестановки её слагаемых.
Переместительный (коммутативный) закон умножения: m · n = n · m . Произведение не меняется от перестановки его сомножителей.
Сочетательный (ассоциативный) закон сложения: ( m + n ) + k = m + ( n + k ) = m + n + k . Сумма не зависит от группировки её слагаемых.
Сочетательный (ассоциативный) закон умножения: ( m · n ) · k = m · ( n · k ) = m · n · k . Произведение не зависит от группировки его сомножителей.
Распределительный (дистрибутивный) закон умножения относительно сложения: ( m + n ) · k = m · k + n · k .
5. (a+b)*c=a*c+b*c
6. Уравнение – это равенство, содержащее одну или несколько переменных.
7. Вычислить значение перемннной.
11. Приводим к одному знаменателю. У какой дроби числитель больше числителя другой дроби, та и больше.
15. Работаем с числителями.