Перестановка называется четной, если число инверсий в ней четно, и нечетной - в противном случае.
Количество инверсий (беспорядка) в перестановке – это количество пар элементов (не обязательно соседних), в которых следующий элемент имеет меньший номер, чем предыдущий.
Пример 1.6. Найти количество инверсий в перестановке
(2, 3, 1, 6, 4, 5, 7).
Решение.
Первый . Перечислим все пары: (2, 3), (2, 1) , (2, 6), (2, 4), (2, 5),
(2, 7), (3, 1) , (3, 6), (3, 4), (3, 5), (3, 7), (1, 6), (1, 4), (1, 5), (1, 7), (6, 4) ,
(6, 5) , (6, 7), (4, 5), (4, 7) и (5, 7). Инверсии подчёркнуты – всего их 4.
Второй представляет собой алгоритм нахождения числа инверсий.
Считаем количество элементов левее 1: их 2. Удаляем единицу: (2, 3, 6, 4, 5, 7). Считаем количество элементов левее 2: их нет (0). Далее удаляем двойку: (3, 6, 4, 5, 7). Считаем количество элементов левее 3: их тоже нет. Продолжаем. После удаления тройки: (6, 4, 5, 7) находим, что левее 4 есть 1 элемент, после удаления 4: (6, 5, 7) левее 5 – 1 элемент; и в (6, 7) левее 6 нет элементов. Суммируем найденные числа – это и есть количество инверсий: 2 + 0 + 0 + 1 + 1 + 0 = 4.
Пошаговое объяснение:
Например:
log3 (log(9/16) (x^2 - 4x + 3) ) = 0
Во-первых, область определения:
{ x^2 - 4x + 3 > 0
{ log(9/16) (x^2 - 4x + 3) > 0
Решаем:
{ (x-1)(x-3) > 0
{ x^2 - 4x + 3 < 1.
Тут надо пояснение. Так как 9/16 < 1, то функция y = log(9/16) x - убывающая.
Поэтому, если логарифм > 0, то выражение под логарифмом < 1.
{ x € (-oo; 1) U (3; +oo)
{ x^2 - 4x + 2 < 0; x € (2-√2; 2+√2)
2-√2 ≈ 0,586 < 1; 2+√2 ≈ 3,414 > 3
Область определения: (2-√2; 1) U (3; 2+√2)
Теперь решаем само уравнение.
Логарифм log(a) 1 = 0 при любом основании а, если а > 0 и а ≠ 1.
Значит:
log(9/16) (x^2 - 4x + 3) = 1
x^2 - 4x + 3 = 9/16
16x^2 - 64x + 48 - 9 = 0
16x^2 - 64x + 39 = 0
D/4 = 32^2 - 16*39 = 1024 - 624 = 400 = 20^2
x1 = (32 - 20)/16 = 12/16 = 0,75 € (2-√2; 1)
x2 = (32 + 20)/16 = 52/16 = 3,25 € (3; 2+√2)
ответ: x1 = 0,75; x2 = 3,25
Точно также решаются остальные.