Пусть в выражении f(x,y)=f1(x)f2(y), то есть уравнение может быть представлено в виде y'=f1(x)f2(y) или в эквивалентной форме:
M1(x)M2(y)dx + N1(x)N2(y)dy = 0.
Эти уравнения называются дифференциальными уравнениями с разделяющимися переменными.
Если f2≠0 для , то, с учетом того, что y'=dy/dx, получаем откуда, с учетом инвариантности дифференциала первого порядка, имеем .
Аналогично, для уравнения во второй форме, если получаем или, интегрируя обе части по x, .
НАЗНАЧЕНИЕ СЕРВИСА. Онлайн калькулятор можно использовать для проверки решения дифференциальных уравнений с разделяющимися переменными.
x*y*dx + (x+1)*dy
=
0
Решить
ПРИМЕР 1. Для дифференциального уравнения y' = ex+y имеем y' = exey, откуда e-ydy = exdx или, интегрируя обе части по x, e-y = ex + C и, наконец, y = -ln(-ex + C).
ПРИМЕР 2. Решить уравнение xydx + (x+1)dy = 0. В предположении, что получаем или, интегрируя, lny = -x + ln(x+1) + lnC, отсюда y = C(x+1)e-x. Решение y = 0 получается при C = 0, а решение x = 1 не содержится в нем. Таким образом, решение уравнения y = C(x+1)e-x,
Необходимо выбрать такие выражения, которые в результате вычисления дают нечётное число. Для этого применяем правила: 1) присложении двух нечётных чисел получаем чётное письмо 2)при сложении двух чётных чисел получаем чётное число 3) при умножении на чётное число получаем чётное число. 4) при вычитании из нечётного числа нечётного получаем чётное 5)при сложении чётного и нечётного числа получаем нечётное число, которое при делении на 2 даст остаток 1 ,(то, что нужно!). 6) При вычитании из чётного числа нечётного (или из нечётного вычитаем чётное) получаем нечётное (то, что нужно!). 7) При умножении нечётного числа на нечётное получаем нечётное (то, что надо!) Тогда из всех выражений надо выписать 2573+48686 (одно число нечётное, другое чётное) 6549-3582 357*985
Пошаговое объяснение:
Уравнения с разделяющимися переменными
Пусть в выражении f(x,y)=f1(x)f2(y), то есть уравнение может быть представлено в виде y'=f1(x)f2(y) или в эквивалентной форме:
M1(x)M2(y)dx + N1(x)N2(y)dy = 0.
Эти уравнения называются дифференциальными уравнениями с разделяющимися переменными.
Если f2≠0 для , то, с учетом того, что y'=dy/dx, получаем откуда, с учетом инвариантности дифференциала первого порядка, имеем .
Аналогично, для уравнения во второй форме, если получаем или, интегрируя обе части по x, .
НАЗНАЧЕНИЕ СЕРВИСА. Онлайн калькулятор можно использовать для проверки решения дифференциальных уравнений с разделяющимися переменными.
x*y*dx + (x+1)*dy
=
0
Решить
ПРИМЕР 1. Для дифференциального уравнения y' = ex+y имеем y' = exey, откуда e-ydy = exdx или, интегрируя обе части по x, e-y = ex + C и, наконец, y = -ln(-ex + C).
ПРИМЕР 2. Решить уравнение xydx + (x+1)dy = 0. В предположении, что получаем или, интегрируя, lny = -x + ln(x+1) + lnC, отсюда y = C(x+1)e-x. Решение y = 0 получается при C = 0, а решение x = 1 не содержится в нем. Таким образом, решение уравнения y = C(x+1)e-x,