Поставь лайк и отметить как лучшее решение
а) |7х|=24,5 (вычеслить)
7×|х|= 24,5 (разделяем обе стороны)
|х|=3,5 (рассмотрим все возможные случаи)
х=3,5 х=–3,5 (уравнения имеет 2 решения)
Х1=3,5 Х2=–3,5
б) |5х+2,1|=0,2 (рассмотреть все возможные случаи)
5х+2,1=0,2
5х+2,1=–0,2 (решить уравнения)
х=–0,38
х=–0,46 (уравнения имеет 2 решения)
Х1=–0,38 Х2=–0,46
с) |9х+27|-4=0,5 (перенести константу в правую часть уравнения)
|9х+27|=0,5+4 (вычислить)
|9х+27|=4,5 (рассмотреть все возможные случаи)
9х+27=4,5
9х+27=–4,5 (решить уравнения)
х=–2,5
х=–3,5 (уравнения имеет 2 решения)
Х1=–3,5 Х2=–2,5
Поставь лайк и отметить как лучшее решение
Пошаговое объяснение:
Ввести предикаты на соответствующих областях (возможно многоместные) и записать с их высказывания:
1. Через три произвольные точки проходит некоторая плоскость.
2. Через три различные точки проходит некоторая плоскость.
3. Через три различные точки проходит единственная плоскость.
4. Через три точки, не лежащие на одной прямой, проходит некоторая плоскость.
5. Между двумя любыми точками на прямой лежит еще хотя бы одна точка.
6. Любая прямая лежит хотя бы в одной плоскости.
7. Сумма двух любых четных чисел четна.
8. Если сумма трех натуральных чисел не делится на простое число, то на него не делится, по крайней мере, одно из слагаемых.
9. Записать в виде логики предикатов определение простого числа.
10. записать в виде логики предикатов определение непрерывности функции.
40 см