Правило сравнения дробей с одинаковыми знаменателями: из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше, и меньше та дробь, числитель которой меньше.
Сравнение дробей с разными знаменателями можно свести к сравнению дробей с одинаковыми знаменателями. Для этого лишь нужно сравниваемые обыкновенные дроби привести к общему знаменателю. Итак, чтобы сравнить две дроби с разными знаменателями, нужно: 1. Привести дроби к общему знаменателю; 2. Сравнить полученные дроби с одинаковыми знаменателями.
Правило сравнения дробей с одинаковыми числителями: из двух дробей с одинаковыми числителями больше та, у которой меньше знаменатель, и меньше та дробь, знаменатель которой больше.
Сравнение обыкновенной дроби с натуральным числом сводится к сравнению двух дробей, если число записать в виде дроби со знаменателем 1 ( Например, число 9 можно представить как дробь 9/1 и т.д.)
Пусть х - количество всех вылеченных бегемотиков. Тогда: 15% от х составляет 15х/100 - количество бегемотиков, вылеченных в 1-ый день. х - 15х/100 - количество бегемотиков, которых осталось вылечить после первого дня работы Айболита. 12/17 • (х - 15х/100) - количество бегемотиков, вылеченных во 2-ой день. 15х/100 + 20 - количество бегемотиков, вылеченных в 3-ий день.
Уравнение:
15х/100 + 12/17 • (х - 15х/100) + 15х/100 + 20 = х 30х/100 + 12/17 • (х - 15х/100) + 20 = х 3х/10 + 12/17 • (х - 3х/20) + 20 = х 3х/10 + 12х/17 - 18х/170 + 20 = х х - 3х/10 - 12х/17 + 18х/170 = 20 170х/170 - 51х/170 - 120х/170 + 18х/170 = 20 17х/170 = 20 х/10 = 20 х = 20•10 х = 200 бегемотиков всего было вылечено доктором Айболитом.
ПРОВЕРКА: 1) 200 • 15/100 = 30 бегемотиков вылечили в 1-й день. 2) 200-30 = 170 бегемотиков осталось вылечить во 2-й и в 3-й дни. 3) 170 • 12/17 = 120 бегемотиков вылечили во 2-й день. 4) 200 - ( 30+120) = 200-150 = 50 бегемотиков вылечили в 3-й день. 5) 50-30=20 бегемотиков - на столько в 3-й день было вылечено больше, чем в 1-й день.
1)60*3=180см
2)2000-180=1820см
ответ:18м2дм