Пошаговое объяснение:
1) (6y-1)(y+2)<(3y+4)(2y+1)
6y^2 +12y-y-2<6y^ +3y+8y+4
6y^2 -6y^2 +11y-11y<4+2
0<6
y принадлежит (-∞; +∞).
2) 4(х+2)<(х+3)^2 -2х
4x+8<x^2 +6x+9-2x
x^2 +4x+9-4x-8>0
x^2 +1>0
x^2>-1 - данное неравенство верно при любом значении x.
Следовательно, x принадлежит (-∞; +∞).
1) (3y-1)(2y+1)>(2y-1)(2+3y)
6y^2 +3y-2y-1>4y+6y^2 -2-3y
6y^2 -6y^2 +y-y>1-2
0>-1
x принадлежит (-∞; +∞).
2) (x-5)^2 +3x>7(1-x)
x^2 -10x+25+3x-7+7x>0
x^2 +18>0
x^2>-18 - данное неравенство верно при любом значении x.
Следовательно, x принадлежит (-∞; +∞).
ответ:Биссектриса делит угол, из которого выходит, пополам. От сюда, можно узнать что углы ∠ABD и ∠DBC=80/2=40°
Рассмотрим треугольник ABD, в нем мы знаем два угла: ADB и ABD. Зная два угла в треугольнике можно найти третий угол, т. к. сумма углов в треугольнике равна 180°. Тогда: 180°-(40°+120°)=20°. Т. е. угол ∠DAB = 20°;
Теперь рассмотрим треугольник ABC, в нем мы теперь знаем два угла: ∠A (равен углу ∠DAB ) и угол ∠B, отсюда можно найти третий угол ∠C: 180°-(20°+80°)=80°.
Рассмотри треугольник DBC, в нем нам известны два угла ∠DBC и ∠C, найдем третий угол: 180°-(40°+80°)=60°.
ответ: В треугольнике CBD углы: ∠CBD=40°, ∠C=80°, ∠CDB=60°.
2)sin2a*ctga-1=2sinacosactga-1=2cos^2(a)-1=cos(2a);
3)(cos3a+sin3a)(cos3a-sin3a)=cos^2(3a)-sin^2(3a)=-cos(6a);
4)1-2sin^2(4x)=cos(8x)