ответ: 1
Наибольший общий делитель НОД (36; 70) = 2
Наименьшее общее кратное НОК (36; 70) = 1260
2 Наибольший общий делитель НОД (24; 60) = 12
Наименьшее общее кратное НОК (24; 60) = 120
Пошаговое объяснение:
Наибольший общий делитель::
Разложим числа на простые множители и подчеркнем общие множители чисел:
36 = 2 · 2 · 3 · 3
70 = 2 · 5 · 7
Общие множители чисел: 2
НОД (36; 70) = 2
Наименьшее общее кратное::
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем меньшее число. Подчеркнем в разложении меньшего числа множители, которые не вошли в разложение наибольшего числа.
70 = 2 · 5 · 7
36 = 2 · 2 · 3 · 3
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (36; 70) = 2 · 5 · 7 · 2 · 3 · 3 = 1260
Второй
Наибольший общий делитель::
Разложим числа на простые множители и подчеркнем общие множители чисел:
24 = 2 · 2 · 2 · 3
60 = 2 · 2 · 3 · 5
Общие множители чисел: 2; 2; 3
Чтобы найти НОД чисел, необходимо перемножить их общие множители:
НОД (24; 60) = 2 · 2 · 3 = 12
Наименьшее общее кратное::
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем меньшее число. Подчеркнем в разложении меньшего числа множители, которые не вошли в разложение наибольшего числа.
60 = 2 · 2 · 3 · 5
24 = 2 · 2 · 2 · 3
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (24; 60) = 2 · 2 · 3 · 5 · 2 = 120
Пошаговое объяснение:
Чтобы решить систему уравнений, надо одну из переменных выразить через другую и подставить полученное выражение во второе уравнение:
2 – 3 * х = 2 * (1 - у);
2 – 3 * х = 2 – 2 * у;
-3 * х = - 2 * у;
у = - 3 * х / -2 = 3 * х / 2.
Подставим во второе уравнение полученное выражение:
4 * (х + у) = х – 1,5;
4 * (х + (3 * х / 2)) – х + 1,5 = 0;
4 * х + 6 * х – х + 1,5 = 0;
9 * х + 1,5 = 0;
9 * х = - 1,5;
х = - 1,5 / 9 = - 15 / 90 = - 1/6.
у = 3 * х / 2 = 3 * (- 1/6) / 2 = - (1/2) / 2 = - 1/4 = - 0,25.
ответ: решением системы уравнений является пара чисел: х = -1/6; у = -0,25.