50 005 — (1 534 + 827) — 1 005 = 46 639
1) 1 534 + 827 = 2361
2) 50 005 — 2361 = 47 644
3) 47 644 - 1 005 = 46 639
706 250 — (50 000 — 2 341) + 55 559 = 714 150
1) 50 000 — 2 341 = 47 659
2) 706 250 — 47 659 = 658 591
3) 658 591 + 55 559 = 714 150
105 000 + 78 000 – (350 + 25 600) = 157 050
1) 350 + 25 600 = 25 950
2) 105 000 + 78 000 = 183 000
3) 183 000 - 25 950 = 157 050
905 340 – (45 670 — 3 007) + 50 002 = 912 679
1) 45 670 — 3 007 = 42 663
2) 905 340 – 42 663 = 862 677
3) 862 677 + 50 002 = 912 679
Пошаговое объяснение:
Правильная четырехугольная пирамида
.
(см²).
(см).
- сторону основания.
Площадь боковой поверхности правильной четырехугольной пирамиды можно вычислить по следующей формуле:
, где
- сторона основания и
- апофема (высота боковой грани, проведенная из вершины).
Попробуем выразить
через
(сторону основания) и
(см) (высоту пирамиды).
Рассмотрим прямоугольный
(где
- середина
). В нем
(см), а
(см) (как половина стороны квадрата, равной
см).
По теореме Пифагора:

Все это подставляем в уравнение площади боковой поверхности (при возведении в квадрат держим в голове, что
- неотрицательное):

Пусть
:

Второй корень нам не подходит по причине отрицательности. Значит:

Задача решена!
ответ:
или около
(см).
Пошаговое объяснение:
28858