9м2дм
2м9дм
12дм6см
15дм3см
1. {3х-у=2 => y=3x-2
{x+2y=10 => y=(10-x)/2 => -0.5x+5
{f(x)=3x-2
{f(x)=-0.5x+5
x=2
y=4
Проверка: {3*2-4=2
{2+2*4=10
Графическое решение - во вложении
2. {x-3y=6 => x=6+3y
{2y-5x=-4
2y-5(6+3y)=-4
2y-30-15y=-4
-13y=26
y=-2
x=6+3*-2
x=0
3. {3x-2y=4 |*2
{6x+4y=16 |*1
{6x-4y=8
{6x+4y=16
12x=24
x=2
3*2-2y=4
-2y=-2
y=1
6*2+4y=16
12+4y=16
4y=4
y=1
Координаты точки пересечения графиков (2;1)
4. {4x-6y=2 |*1
{3y-2x=1 => -2x+3y=1 |*2
{4x-6y=2
{-4x+6y=2
4x-4x-6y+6y=2+2
0=4 - равенство неверно
Cистема не имеет решений
Пошаговое объяснение:
Исследование выборки - базовая тема при изучении математической статистики, с нее начинаются любые курсы МС. Нужно научиться находить объем выборки, числовые характеристики (выборочное среднее, дисперсию, исправленную дисперсию, среднее квадратическое отклонение, коэффициент вариации и т.п.). При этом для выборок большого объема часто требуется перейти к интервальному представлению (правильно рассчитав число интервалов и их длину, обычно по формуле Стерджеса). Это все относится к первичной обработке статистической выборки.
Помимо проведения вычислений (чаще всего с нужно уметь графически представлять выборку: строить полигон, гистограмму, кумуляту, огиву и другие графики и диаграммы.
В этом разделе мы рассмотрим решения задач на исследование выборки, нахождение ее характеристик и построение соответствующих графиков. Изучайте!
Пошаговое объяснение:
2м 9дм
12 дм 6 см
15 дм 3 см