М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
лукашук
лукашук
01.01.2020 11:35 •  Математика

За сколько месяцев в мастерской по ремонту мебели поменяют обивку на 300 диванах, если мастера перетягивают 25 диванов в месяц? выберите верное решение задачи:
300 – 25 = 275 (д.)

300 : 25 = 12 (мес.)

300 : 25 = 14 (мес.)

300 + 25 = 325 (д.)

👇
Ответ:
tural23
tural23
01.01.2020

Пошаговое объяснение:

За сколько месяцев в мастерской по ремонту мебели поменяют обивку на 300 диванах, если мастера перетягивают 25 диванов в месяц?300 : 25 = 14 (мес.)

4,6(99 оценок)
Ответ:
lili2005ok
lili2005ok
01.01.2020

300/25=12 месяцев

Пошаговое объяснение:

4,5(16 оценок)
Открыть все ответы
Ответ:
arinasinger
arinasinger
01.01.2020

1.

а)4 866, 7 160, 12 382

б)3 035, 305 055.

в)7 160.

2.

а)6 795, 4 872, 2 106, 55 065.

б)6 795, 2 106, 55 065.

в)6 795,55 065.

г)2 106.

д)6 795.

е)4 872,2 106.

3.

2×2×2×97=776

4.

а)

266 = 2 * 7 * 19

285 = 3 * 5 * 19

НОД (266 и 285) = 19 - наибольший общий делитель

Числа 266 и 285 не являются взаимно простыми, так как у них есть общий делитель.

б)

301 = 7 * 43

585 = 3 * 3 * 5 * 13

Числа 301 и 585 взаимно простые, так как у них нет общих делителей, кроме единицы.

5)

15 918:(577*29-16 354)+978=1020

1)577*29=16 733

2)16 733-16 354=379

3)15 918:379=42

4)42+978=1020

1020 = 2*2*3*5*17

4,5(67 оценок)
Ответ:
Flyzi
Flyzi
01.01.2020

ответ:

исследовать функцию  y=-x^4+8x^2-9  и построить ее график.

решение:

1. область определения функции - вся числовая ось.

2. функция  y=-x^4+8x^2-9  непрерывна на всей области определения. точек разрыва нет.

3. четность, нечетность, периодичность:

  так как переменная имеет чётные показатели степени, то функция чётная, непериодическая.

4. точки пересечения с осями координат:  

ox: y=0,  -x^4+8x^2-9=0,  заменим  x^2 = n.

квадратное уравнение, решаем относительно n:  

ищем дискриминант:

d=8^2-4*(-1)*(-9)=64-4*(-1)*(-9)=64-(-4)*(-9)=64-(-4*(-9))=64-(-(-4*9))=64-(-(-36))=64-36=28;

дискриминант больше 0, уравнение имеет 2 корня:

n₁=(√28-8)/(2*(-1)) = (√28-8)/(-2) = -(2√7/2-8/2)= 4 -√7 ≈ 1,354249;

n₂ = (-√28-8)/(2*(-1)) = (-2√7-8)/(-2)= 4 + √7 ≈ 6,645751.

обратная замена: х =  √n.

x₁ = √1,354249 = 1,163722,     x₂ =   -1,163722.

  x₃ = √6,645751 = 2,57793,       x₄ = -2,577935.

получаем 4 точки пересечения с осью ох:

(1,163722; 0),   (-1,16372; 0),   (2,57793; 0),   (-2,57793; 0).

  x₃ = √6,645751 =  2,57793,

oy: x = 0 ⇒ y = -9. значит (0; -9) - точка пересечения с осью oy.

5. промежутки монотонности и точки экстремума:

y=-x^4+8x^2-9.

y'=0 ⇒-4x³+16x = 0 ⇒ -4x(x²-4) = 0.

имеем 3 критические точки: х = 0, х = 2 и х = -2.

определяем знаки производной вблизи критических точек.

x =     -3       -2       -1       0       1       2       3

y' =     60       0       -12       0       12       0       -60.

где производная положительна - функция возрастает, где отрицательна - там убывает. точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.

минимум функции в точке:   x = 0.

максимумы функции в точках:

x = -2.

x = 2.

убывает на промежутках (-2, 0] u [2, +oo).

возрастает на промежутках (-oo, -2] u [0, 2).

  6. вычисление второй производной: y''=-12х² + 16  , 

найдем точки перегибов, для этого надо решить уравнение

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0

(вторая производная равняется нулю),

корни полученного уравнения будут точками перегибов для указанного графика функции:  

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0

вторая производная   4 \left(- 3 x^{2} + 4\right) = 0.

решаем это уравнение

корни этого уравнения

x_{1} = - \frac{2 \sqrt{3}}{3}.

x_{2} = \frac{2 \sqrt{3}}{3}.

7. интервалы выпуклости и вогнутости:

найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:

вогнутая на промежутках [-2*sqrt(3)/3, 2*sqrt(3)/3]

выпуклая на промежутках (-oo, -2*sqrt(3)/3] u [2*sqrt(3)/3, oo)

4,4(58 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ