11. Пусть высоты АА1, ВВ1 и СС1 непрямоугольного треугольника ABC (или их продолжения) пересекаются в точке Н. Доказать, что АН • НА1=ВН • НВ1=СН • НС1. Решение. Если рассмотреть остроугольный треугольник ABC с высотами АА1и ВВ1 , пересекающиеся в точке Н, то видно треугольники АНВ1 и ВНА1 подобны по двум углам (∠АНВ1=∠ВНА1, ∠АВ1Н=∠ВА1Н=90), поэтому АН/ВН=НВ1/НА1. Отсюда следует, что АН • НА1=ВН • НВ1. Аналогично доказывается, что ВН • НВ1=СН • НС1. 12. Рассмотрим треугольник ABC со сторонами АВ=с, АС=b и биссектрисой АА1. Обозначим буквой F точку пересечения прямой, проходящей через точку А1 и перпендикулярной к АА1, с большей (точнее, не меньшей) из сторон АВ и АС. Исходя из признака равенства треугольников по 2 сторонам и биссектрисе, проведенным из одной вершины и по теореме о биссектрисе треугольника: AF=2bc/(b+c). Следовательно, АА1=2bc/(b+c)*cos (A/2). Утверждение доказано
Рассмотрим треугольник ABC (AB не равно АС), из вервершины А которого проведены высота АН, биссектриса AD и ради- радиус АО описанной окружности. Докажем, что луч AD — биссектриса угла О АН. Продолжим биссектрису AD до пересечения с описанной окружно- окружностью в точке М. Углы ОМА и О AM при основании равнобедренного треугольника ОAM равны, причем эти углы — острые. Поскольку ВМ=МС и ВО=ОС, то прямая ОМ является серединным перпендикуляром к отрезку ВС. Прямые ОМ и АН, будучи перпендикулярными к прямой ВС, параллельны. Поэтому если углы ОМА и DAH — накрест лежащие, то ∠DAH=∠OMA < 90°; если же эти углы — односторонние, то ∠DAН= 180° - ∠OMA > 90°. Но угол DAH является острым углом прямоугольного треугольника ВАН. Следовательно, ∠DAH=∠OMA=∠ОAM, причем лучи АН и АО лежат по разные стороны от прямой AD. Это и означает, что луч AD — биссектриса угла ОАН. Утверждение доказано.
2 это 100 120 будет 2,4