В решении.
Пошаговое объяснение:
Из города в противоположных направлениях выехали два поезда - товарный и скорый. скорость товарного поезда в 1,8 раза меньше скорости скорого. Товарный поезд вышел на 36 минут раньше скорого. Найдите скорости поездов, если через 2,3 часа после выезда скорого поезда расстояние между ними составило 366,08 км.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость товарного поезда.
1,8х - скорость скорого поезда.
36 минут = 0,6 часа.
0,6 + 2,3 = 2,9 (час) - время товарного поезда.
х*2,9 - расстояние товарного проезда.
1,8х * 2,3 = 4,14х - расстояние скорого поезда.
По условию задачи уравнение:
2,9х + 4,14х = 366,08
7,04х = 366,08
х = 366,08/7,04
х = 52 (км/час) - скорость товарного поезда.
52*1,8 = 93,6 (км/час) - скорость скорого поезда.
Проверка:
52 * 2,9 + 93,6 * 2,3 = 150,8 + 215,28 = 366,08 (км), верно.
ответ:1)
№1
1) Пусть во второй корзине лежало х грибов.
В первой корзине было в 4 раза больше, чем во второй, то есть:
4 * х = 4х грибов.
В первую корзину положили 4 гриба, значит в ней стало:
(4х + 4) грибов.
Во вторую корзину положили 31 гриб, значит в ней стало:
(х + 31) гриб.
Грибов в корзинах стало поровну.
Составим и решим уравнение:
4х + 4 = х + 31,
3х = 27,
х = 9 грибов,
4х = 4 * 9 = 36 грибов.
ответ: в первой корзине было 36 грибов, а во второй 9 грибов.
№2
Решим данную задачу при уравнения.
Пусть первая бригада изготовила х деталей, тогда вторая бригада изготовила (х + 5) деталей, а третья бригада - (х + 5 - 15) деталей. Нам известно, что три бригады рабочих изготовили за смену 100 деталей. Составляем уравнение:
х + х + 5 + х + 5 - 15 = 100;
х + х + х + 10 - 15 = 100;
х + х + х - 5 = 100;
х + х + х = 100 + 5;
х * (1 + 1 + 1) = 105;
х * 3 = 105;
х = 105 : 3;
х = 35 деталей - изготовила первая бригада;
35 + 5 = 40 деталей - изготовила вторая бригада;
35 + 5 - 15 = 25 деталей - изготовила третья бригада.
ответ: 35 деталей; 40 деталей; 25 деталей.
№3
(х-1)(х-3)<0, раскрываем скобочки:
x^2 -3x-1x+3<0, теперь приводим подобные слагаемые:
x^2 -4x+3<0. Теперь необходимо найти нули неравенства, для того, чтобы решить его универсальным методом интервалов. Для этого приравниваем левую часть неравенства к нулю.
x^2 -4x+3=0. Сейчас решаем данное уравнение через дискриминант.
Х1,2=(4+-корень(16-4*1*3)/2)=(4+-2)/2
Х1=3
Х2=1
Теперь используем универсальный метод интервалов. Для этого наносим наши корни на числовую прямую и ищем отрицательный промежуток, подставляя для этого числа с промежутков в уравнение. Получаем:
+ — +
0——о——-о———>х
1 3
Видим, что нужным нам промежуток лежит в интервале от 1 до 3, т.е. <1х<3, а в ответ запишем через знак принадлежности.
ответ: х принадлежит(э в другую сторону) (1;3).
Пошаговое объяснение:
№1
1) Пусть во второй корзине лежало х грибов.
В первой корзине было в 4 раза больше, чем во второй, то есть:
4 * х = 4х грибов.
В первую корзину положили 4 гриба, значит в ней стало:
(4х + 4) грибов.
Во вторую корзину положили 31 гриб, значит в ней стало:
(х + 31) гриб.
Грибов в корзинах стало поровну.
Составим и решим уравнение:
4х + 4 = х + 31,
3х = 27,
х = 9 грибов,
4х = 4 * 9 = 36 грибов.
ответ: в первой корзине было 36 грибов, а во второй 9 грибов.
№2
Решим данную задачу при уравнения.
Пусть первая бригада изготовила х деталей, тогда вторая бригада изготовила (х + 5) деталей, а третья бригада - (х + 5 - 15) деталей. Нам известно, что три бригады рабочих изготовили за смену 100 деталей. Составляем уравнение:
х + х + 5 + х + 5 - 15 = 100;
х + х + х + 10 - 15 = 100;
х + х + х - 5 = 100;
х + х + х = 100 + 5;
х * (1 + 1 + 1) = 105;
х * 3 = 105;
х = 105 : 3;
х = 35 деталей - изготовила первая бригада;
35 + 5 = 40 деталей - изготовила вторая бригада;
35 + 5 - 15 = 25 деталей - изготовила третья бригада.
ответ: 35 деталей; 40 деталей; 25 деталей.
№3
(х-1)(х-3)<0, раскрываем скобочки:
x^2 -3x-1x+3<0, теперь приводим подобные слагаемые:
x^2 -4x+3<0. Теперь необходимо найти нули неравенства, для того, чтобы решить его универсальным методом интервалов. Для этого приравниваем левую часть неравенства к нулю.
x^2 -4x+3=0. Сейчас решаем данное уравнение через дискриминант.
Х1,2=(4+-корень(16-4*1*3)/2)=(4+-2)/2
Х1=3
Х2=1
Теперь используем универсальный метод интервалов. Для этого наносим наши корни на числовую прямую и ищем отрицательный промежуток, подставляя для этого числа с промежутков в уравнение. Получаем:
+ — +
0——о——-о———>х
1 3
Видим, что нужным нам промежуток лежит в интервале от 1 до 3, т.е. <1х<3, а в ответ запишем через знак принадлежности.
ответ: х принадлежит(э в другую сторону) (1;3).