М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
chikurovden
chikurovden
19.04.2021 12:48 •  Математика

Все по действиям, и доказательства​


Все по действиям, и доказательства​

👇
Открыть все ответы
Ответ:
MRSinn
MRSinn
19.04.2021
Муниципальное казенное общеобразовательное учреждение
«Основная общеобразовательная школа №14»
Самостоятельная работа по теме
«Решение линейных уравнений»
7 класс 
(6 вариантов)
Автор: Македонова Ольга Викторовна
Учитель математики высшей квалификационной категории
Миасский городской округ, 2016 г.
7 класс. Самостоятельная работа по теме «Решение линейных уравнений»
1 вариант
– 7х = - 21
20х = -2
2х + 4 = 0
7х – 2 = 4
12 – 2х = 3х
5х – 8 = 9 + 3х
9х + (6 – 2х) = 15
2х – (5х + 4) = - 8
5 – 3(2х – 7) = -6х
4(5х +8) – 2х = 12
7 класс. Самостоятельная работа по теме «Решение линейных уравнений»
2 вариант
– 3х = - 21
20х = -5
8х + 5 = 0
3х – 7 = 2
11 – 4х = 2х
8х – 2 = 7 + 2х
3х + (4 – 6х) = 18
6х – (2х + 5) = - 4
6 – 2(3х – 9) = - 4х
5 (2х +2) – 5х = 13
7 класс. Самостоятельная работа по теме «Решение линейных уравнений»
3 вариант
– 5х = - 15
40х = -5
6х + 2 = 0
8х – 5 = 3
16 – 8х = 2х
4х – 3 = 2 + 7х
2х + (4 – 3х) = 11
6х – (3х + 2) = - 
8 – 5(2х – 4) = -2х
6(2х +5) – 7х = 17
7 класс. Самостоятельная работа по теме «Решение линейных уравнений»
4 вариант
– 8х = - 16
40х = -2
7х + 3 = 0
3х – 2 = 8
14 – 3х = 6х
4х – 3= 4 + 2х
5х + (3 – 2х) = 14
7х – (8х + 4) = - 3
4 – 3(5х – 6) = -3х
2(4х +6) – 5х = 10
7 класс. Самостоятельная работа по теме «Решение линейных уравнений»
5 вариант
– 6х = - 18
60х = -2
6х + 4 = 0
5х – 3 = 4
10 – 2х = 6х
2х – 5 = 9 + 6х
7х + ( 2– х3) = 19
2х – (4х + 9) = - 8
5 – 6(2х – 3) = -8х
3(7х +8) – 5х = 12
7 класс. Самостоятельная работа по теме «Решение линейных уравнений»
6 вариант
– 6х = - 12
30х = -6
2х + 7 = 0
7х – 2 = 9
13 – 2х = 8х
6х – 5 = 2 + 3х
4х + (3 – 2х) = 15
7х – (5х + 3) = - 2
5 – 3(4х – 3) = -6х
3(2х +6) – 4х = 14
4,8(61 оценок)
Ответ:
Selch
Selch
19.04.2021
Для определённости пронумеруем виды трёхслойного куба (далее куб) по порядку по строкам. Так, например, третий – это полностью симметричный.

Далее, для описания манипуляций с видами будем использовать термины:

RT (правый единичный поворот на 90 градусов по часовой стрелке) ,
LT (левый единичный поворот на 90 градусов против часовой стрелки) ,
UT (разворот на 180 градусов)

Наша начальная цель: собрать из пяти видов верхнюю часть куба, т.е. его грани, стоящие над столом. Будем считать, что мы смотрим на стол с кубом сверху. Верхнюю часть куба, состоящую из пяти видов, будем собирать в виде крестовой раскладки.

В центре креста раскладки будет верхняя грань, которая смотрит на нас, когда мы смотрим вниз на стол с кубом. Дальняя от нас (сверху экрана, если смотреть на ноутбук) часть креста раскладки: это задняя сторона куба. Ближняя к нам (снизу экрана, если смотреть на ноутбук) часть креста раскладки: это передняя сторона куба. Левая часть креста раскладки – это левая сторона куба и правая часть раскладки – соответственно правая сторона.

Важно понимать, что на стыках видов (на рёбрах) при составлении раскладки должны совпадать цветные квадратики на краях видов: чёрный к чёрному и белый к белому, поскольку рёбра куба одновременно являются и рёбрами маленьких кубиков, каждый из которых обладает однотонным окрасом со всех сторон.

Перебор возможных вариантов удобно делать на черновике с карандашом и бумагой, либо с ручкой, но тогда нужно зачёркивать неудачные варианты.

Перебор должен быть системным, иначе мы пропустим тот или иной вариант, и можем пропустить и нужный нам вариант. В качестве системы можно предложить, например, такой график просмотра вариантов.

1. Выбираем вид для верхней грани куба, т.е. для центра креста раскладки (сначала первый, потом второй и т.д.)

2. Когда выбран какой-то вид для верхней (центральной) грани, пытаемся подмонтировать в качестве задней грани к нему другие виды. Опять же по порядку видов.

3. Когда выбран какой-то вид для верхней (центральной) и задней граней, пытаемся подмонтировать в качестве правой грани к нему другие виды. Опять же по порядку видов.

4. Когда выбран какой-то вид для верхней (центральной), задней и правой граней, пытаемся подмонтировать в качестве передней грани к нему другие виды. Опять же по порядку видов.

5. Когда выбран какой-то вид для верхней (центральной), задней, правой и передней граней, пытаемся подмонтировать в качестве левой грани к нему оставшийся вид.

При этом нужно следить, чтобы совпадали рёбра не только верхней (центральной) грани с боковыми, но и рёбра между боковыми гранями.

Перед перебором нужно отметить, что грани 3-его и 5-ого видов – несовместимы. Как их не крути, их рёбра никогда не совместятся. Значит, ни один из этих видов не может служить верхней гранью куба, поскольку иначе он бы взаимодействовал по ребру с несовместным видом. Кроме того, эти несовместные виды не могут быть рядом и на соседних боковых гранях. Таким образом, мы понимаем, что при переборе 3-ий и 5-ый виды можно размещать только на противоположных гранях.

Последовательный перебор из, примерно десятка неудачных – приводит к единственному хорошему варианту:

В центре креста раскладки: 2-ой вид.
Слева: 3-ий вид.
Справа: 5ый вид RT.
Сзади: 1-ый вид.
Впереди: 4-ый вид UT.

Эта раскладка показана на первом рисунке. Обратите внимание, что по раскраске совмещены не только рёбра на стыке видов центральных и боковых граней, но и рёбра на стыке соседних боковых граней.

Теперь очень аккуратно в строгом соответствии с буквами-метками (они должны совместиться) переворачиваем раскладку, так чтобы получилась нижняя грань. Это показано на втором рисунке и там уже проявляется по совмещениям на рёбрах вид нижней грани.

Если взглянуть на предлагаемые варианты, то мы можем легко убедиться, что подходит и вариант (А) и вариант (Д) при повороте их на LT.

Выбрать нужный вариант – можно только сосчитав количество белых (их должно быть 12) и чёрных кубиков (их должно быть 15).

Смотрим на первую раскладку. На верхней грани – 3 белых. В среднем видимом слое, в том, что зажат между верхней и нижней гранью (состоящем из 8 кубиков) – 4 белых. В нижней грани (что можно увидеть на второй картинке) – как минимум 3 кубика.

Всего в видимой и известной части кубика мы насчитали 10 белых кубиков. А должно их быть 12. Значит, один белый кубик находится в центре куба (он невидим) и ещё один белый кубик мы можем разместить в положение, отмеченное на втором рисунке знаком вопроса.

А значит, окончательно, нам подходит вариант (Д)

О т в е т : (Д) .

Вквадрате 3х3 некоторые клетки белые, а остальные черные. известно что не во всех столбцах не все к
Вквадрате 3х3 некоторые клетки белые, а остальные черные. известно что не во всех столбцах не все к
4,8(39 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ