Никита спросил у своих одноклассников об их любимом занятии во время летних каникул. Результат данного опроса представлен ниже в виде круговой диаграммы. Используя данную круговую диаграмму, ответьте на следующие вопросы:
а) Какая часть одноклассников Никиты любит кататься на велосипеде?
в) Какая часть одноклассников Никиты любит рыбачить?
с) Какое занятие является самым популярным среди одноклассников Никиты?
д) Какое занятие является менее популярным среди одноклассников Никиты?
Старший Знаток
1) y=log_5(4-2x-x^2)+3
Область определения:
4 - 2x - x^2 > 0
x^2 + 2x - 4 < 0
x^2 + 2x + 1 - 5 < 0
(x+1)^2 - (√5)^2 < 0
(x+1-√5)(x+1+√5) < 0
x ∈ (-1-√5; -1+√5)
Локальные экстремумы будут в точках, в которых производная равна 0.
Производная
y'= \frac{-2-2x}{(4-2x-x^2)*ln(5)} = \frac{-2(x+1)}{(4-2x-x^2)*ln(5)} =0
x = -1 ∈ (-1-√5; -1+√5)
y(-1)=log_5(4-(-2)-(-1)^2)+3=log_5(4+2-1)+3=1+3=4
Знаменатель > 0, потому что скобка (4-2x-x^2) > 0, по области определения логарифма. Числитель -2(x+1)>0 при x<-1, значит, график возрастает, а при x>-1 график убывает. Значит, -1 точка максимума.
ответ: Наибольшее значение y(-1) = 4
2) y=log_3(x^2-6x+10)+2
Область определения:
x^2 - 6x + 10 > 0
x^2 - 6x + 9 + 1 > 0
(x - 3)^2 + 1 > 0
Сумма квадрата и положительного числа положительна при любом x.
x ∈(-oo; +oo)
Локальные экстремумы будут в точках, в которых производная равна 0.
y' = \frac{2x-6}{(x^2-6x+10)*ln(3)} = \frac{2(x-3)}{(x^2-6x+10)*ln(3)} =0
x = 3
y(3)=log_3(9-6*3+10)+2=log_3(9-18+10)+2=0+2=2
Здесь все наоборот. Знаменатель тоже >0. Числитель 2(x-3)<0 при x<3 (график убывает) и 2(x-3)>0 при x>3 (график возрастает).
Значит, 3 - точка минимума.
ответ: Наименьшее значение y(3) = 2
Пошаговое объяснение: